【問題探究】
(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.
①請(qǐng)?zhí)骄緼D與BD之間的位置關(guān)系:AD⊥BDAD⊥BD;
②若AC=BC=10,DC=CE=2,則線段AD的長為44;
【拓展延伸】
(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時(shí),畫出圖形,并求線段AD的長.

10
2
21
7
3
【考點(diǎn)】幾何變換綜合題.
【答案】AD⊥BD;4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/21 15:0:1組卷:4042引用:10難度:0.3
相似題
-
1.如圖①,在△ABC中,∠ABC=90°,AB=4,BC=3.點(diǎn)P從點(diǎn)A出發(fā),沿折線AB-BC以每秒5個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)D從點(diǎn)C出發(fā),沿CA以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P、D同時(shí)停止運(yùn)動(dòng).當(dāng)點(diǎn)P不與點(diǎn)A、C重合時(shí),作點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)Q,連接PQ交AC于點(diǎn)E,連接DP、DQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,線段CE的長為y.
(1)求出y與t之間的函數(shù)關(guān)系式;
(2)當(dāng)△PDQ為銳角三角形時(shí),求t的取值范圍;
(3)如圖②,取PD的中點(diǎn)M,連接QM.當(dāng)直線QM與△ABC的一條直角邊平行時(shí),直接寫出t的值.發(fā)布:2025/5/26 8:0:5組卷:371引用:1難度:0.1 -
2.如圖,兩直角三角形ABC和DEF有一條邊BC與EF在同一直線上,且∠DFE=∠ACB=60°,BC=1,EF=2.設(shè)EC=m(0≤m≤4),點(diǎn)M在線段AD上,且∠MEB=60°.
(1)如圖1,當(dāng)點(diǎn)C和點(diǎn)F重合時(shí),=;AMDM
(2)如圖2,將圖1中的△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A落在DF邊上時(shí),求的值;AMDM
(3)當(dāng)點(diǎn)C在線段EF上時(shí),△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α度(0<α<90°),原題中其他條件不變,則=.AMDM發(fā)布:2025/5/26 11:0:2組卷:652引用:2難度:0.2 -
3.在△ABC中,AC=AB,∠CAB=120°,點(diǎn)D是邊AB上的一動(dòng)點(diǎn).F是邊CD上的動(dòng)點(diǎn).連接AF并延長至點(diǎn)E,交BC于G,連接BE.且∠E+∠BDF=180°,∠AFC=60°.
(1)如圖1,若BC=6,BE=4,求CD的長.3
(2)如圖2,若點(diǎn)D是AB的中點(diǎn),求證:AE=DF+BF.3
(3)如圖3,在(2)的條件下,將△BDE繞點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)中的三角形記作△D1BE1,取D1E1的中點(diǎn)為M,連接CM.當(dāng)CM最大時(shí),直接寫出的值.AM2EM2發(fā)布:2025/5/26 11:30:1組卷:164引用:1難度:0.1
相關(guān)試卷