已知拋物線y=-12x2+bx+c與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的表達(dá)式;
(2)求△ABC的面積;
(3)在拋物線上是否存在一點(diǎn)P,使tan∠BAP=1,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
y
=
-
1
2
x
2
+
bx
+
c
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1);
(2)5;
(3)(2,3)或(6,-7).
y
=
-
1
2
x
2
+
3
2
x
+
2
(2)5;
(3)(2,3)或(6,-7).
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/18 19:0:1組卷:56引用:2難度:0.5
相似題
-
1.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),連接BC.P是直線BC上方拋物線上一動(dòng)點(diǎn),連接PA,交BC于點(diǎn)D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數(shù)y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內(nèi)的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發(fā)布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點(diǎn),點(diǎn)P是拋物線在第四象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點(diǎn)Q.12
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)PG+PQ取得最大值時(shí),求點(diǎn)P的坐標(biāo)和2PG+PQ的最大值;2
(3)將拋物線向右平移個(gè)單位得到新拋物線,M為新拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn).當(dāng)(2)中134PG+PQ最大時(shí),直接寫(xiě)出所有使得以點(diǎn)A,P,M,N為頂點(diǎn)的四邊形是菱形的點(diǎn)N的坐標(biāo),并把求其中一個(gè)點(diǎn)N的坐標(biāo)的過(guò)程寫(xiě)出來(lái).2發(fā)布:2025/5/24 5:0:1組卷:1765引用:4難度:0.3 -
3.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),P為y軸上的一個(gè)動(dòng)點(diǎn),已知A(-2,0)、C(0,-2
),且拋物線的對(duì)稱軸是直線x=1.3
(1)求此二次函數(shù)的解析式;
(2)連接PB,則PC+PB的最小值是;12
(3)連接PA、PB,P點(diǎn)運(yùn)動(dòng)到何處時(shí),使得∠APB=60°,請(qǐng)求出P點(diǎn)坐標(biāo).發(fā)布:2025/5/24 5:0:1組卷:1948引用:7難度:0.2