項目化學習:車輪的形狀
[問題提出]車輪為什么要做成圓形,這里面有什么原理?
[合作探究]
(1)探究A組:如圖1,圓形車輪半徑為6cm,其車輪軸心O到地面的距離始終為 66cm;
(2)探究B組:如圖2,正方形車輪的軸心為O,若正方形的邊長為6cm,求車輪軸心O距離地面的最高點與最低點的高度差;
(3)探究C組:如圖3,有一個破損的圓形車輪,半徑為6cm,破損部分是一個弓形,其所對圓心角為 90°,車輪軸心為O,讓車輪在地上無滑動地滾動一周,求點O經過的路程.

(探究發現:車輛的平穩關鍵看車輪軸心是否穩定,即車輪軸心是否在一條水平線上運動.)
[拓展延伸]如圖4,分別以正三角形的三個頂點A,B,C為圓心,以正三角形的邊長為半徑作60°圓弧,這樣形成的曲線圖形叫做“萊洛三角形”.
(4)探究D組:使“萊洛三角形”沿水平方向向右滾動.在滾動過程中,其“最高點”“車輪軸心O”均在不斷移動位置,那么在“萊洛三角形”滾動的過程中,其“最高點“和“車輪軸心O”所形成路徑的大致圖案是 AA.

(延伸發現:“萊洛三角形”在滾動時始終位于一組平行線之間,因此放在其上的物體也能夠保持平衡,但其車軸中心O并不穩定.)
【考點】圓的綜合題.
【答案】6;A
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/30 8:0:9組卷:317引用:2難度:0.2
相似題
-
1.已知△ABC內接于⊙O,D是弧AC上一點,連接BD、AD,BD交AC于點M,∠BMC=∠BAD.
(1)如圖1,求證:BD平分∠ABC;
(2)如圖2,過點D作⊙O的切線,交BA的延長線于點F,求證:DF∥AC;
(3)如圖3,在(2)的條件下,BC是⊙O的直徑,連接DC,AM=1,DC=,求四邊形BFDC的面積.6發布:2025/5/25 21:0:1組卷:147引用:1難度:0.4 -
2.如圖1、2,在?ABCD中,AB=10,AD=15,tan∠BAD=
,點M在AD上由點A向點D運動,過點M在AD的右側作MP⊥AM,連接PA,PD,使∠MPA=∠BAD,經過點A,M,P作⊙O.43
(1)如圖1,若AM=4,則陰影部分的面積為 (結果保留π);
(2)在點M移動過程中,與?AM的比是否為定值?如果是,求出這個比值;如果不是,請說明理由.并求當⊙O與DP相切時AM的長;?PM
(3)如圖2,當△APD的外心Q在△AMP內部時(包括邊界),求在點M移動過程中,點Q經過的路徑的長;
(4)當△APD為等腰三角形,并且PD與⊙O相交時,直接寫出⊙O截線段PD所得弦的長.(參考數據:sin49°≈,tan37°≈34,cos41°≈34)34發布:2025/5/25 19:0:2組卷:173引用:1難度:0.1 -
3.如圖1,在⊙O中,AB和CD是兩條弦,且AB⊥CD,垂足為點E,連接BC,過A作AF⊥BC于F,交CD于點G;
(1)求證:GE=DE;
(2)如圖2,連接AC、OC,求證:∠OCF+∠CAB=90°;
(3)如圖3,在(2)的條件下,OC交AF于點N,連接EF、EN、DN,若OC∥EF,EN⊥AF,DN=2,求NO的長.17發布:2025/5/25 19:30:2組卷:90引用:1難度:0.1