圖1是某型號挖掘機,該挖掘機是由基座、主臂和伸展臂構成.圖2是某種工作狀態下的側面結構示意圖(MN是基座的高,MP是主臂,PQ是伸展臂,EM∥QN).已知基座高度MN為1m,主臂MP長為5m,測得主臂伸展角.∠PME=37°.
(參考數據:sin37°≈35,tan37°≈34,sin53°≈45,tan53°≈43)

(1)求點P到地面的高度;
(2)若挖掘機能挖的最遠處點Q到點N的距離為7m,求∠QPM的度數.
3
5
3
4
4
5
4
3
【考點】解直角三角形的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/24 10:30:2組卷:2483引用:13難度:0.4
相似題
-
1.某數學興趣小組在探究如何求tan15°的值,經過思考、討論、交流,得到以下思路:思路一:如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設AC=1,則BD=BA=2,BC=
.tanD=tan15°=3=12+3=2-2-3(2+3)(2-3).思路二:利用科普書上的和(差)角正切公式:tan(α±β)=3.假設α=60°,β=45°代入差角正切公式:tan15°=tan(60°-45°)=tanα±tanβ1+tanαtanβ=tan60°-tan45°1+tan60°tan45°=2-3-11+3.請解決下列問題(上述思路僅供參考).3
(1)類比:求出tan75°的值;
(2)應用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度.發布:2025/5/25 13:0:1組卷:142引用:2難度:0.4 -
2.如圖1是我們經常看到的一種折疊桌子,它是由下面的支架AD,BC與桌面構成如圖2,已知OA=OB=OC=OD=20
cm,∠COD=60°,則點A到地面(CD所在的平面)的距離是 cm.3發布:2025/5/25 13:30:1組卷:188引用:4難度:0.6 -
3.如圖,某教學樓AB的后面有一建筑物CD,當光線與地面夾角是22°時,教學樓在建筑物的墻上留下高2米的影子CE;而當光線與地面夾角是45°時,教學樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上),求教學樓AB的高度(sin22°≈
,cos22°≈38,tan22°≈1516)25發布:2025/5/25 13:30:1組卷:1104引用:4難度:0.3