已知f(x)=xlnx-ax2(a∈R).
(1)若a=1,過點P(0,2)作曲線y=f(x)的切線l,求:切線l的方程;
(2)若x1,x2是函數f(x)的兩個不同的極值點,求證:x31?x2>e-1;
(3)a=-1時,f(x)<x3對?x∈(1,+∞)恒成立,證明不等式en∑i=1i+1i2>n對任意的正整數n都成立.
x
3
1
?
x
2
>
e
-
1
e
n
∑
i
=
1
i
+
1
i
2
>
n
【答案】(1)切線方程為(ln2-3)x-y+2=0;
(2)證明過程見解析;
(3)證明過程見解析.
(2)證明過程見解析;
(3)證明過程見解析.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/17 8:0:9組卷:86引用:2難度:0.4
相似題
-
1.已知函數f(x)=(x-a)lnx(a∈R),它的導函數為f'(x).
(1)當a=1時,求f'(x)的零點;
(2)若函數f(x)存在極小值點,求a的取值范圍.發布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數
有兩個極值點,則實數a的取值范圍為( )f(x)=e2x4-axexA. (-∞,-12)B. (-12,0)C. (12,+∞)D. (0,12)發布:2024/12/29 13:30:1組卷:124引用:4難度:0.5 -
3.定義:設f'(x)是f(x)的導函數,f″(x)是函數f'(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.經過探究發現:任何一個三次函數都有“拐點”且“拐點”就是三次函數圖像的對稱中心,已知函數
的對稱中心為(1,1),則下列說法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)A. ,b=-1a=13B.函數f(x)既有極大值又有極小值 C.函數f(x)有三個零點 D.過 可以作兩條直線與y=f(x)圖像相切(-1,13)發布:2024/12/29 13:30:1組卷:183引用:7難度:0.5