如圖,拋物線y=ax2-2x+c與x軸相交于A(-1,0),B(3,0)兩點.
(1)求拋物線的函數表達式;
(2)點C在拋物線的對稱軸上,且位于x軸的上方,將△ABC沿直線AC翻折得到△AB'C,點B'恰好落在拋物線的對稱軸上.若點G為直線AC下方拋物線上的一點,求當△AB'G面積最大時點G的橫坐標;
(3)點P是拋物線上位于對稱軸右側的一點,在拋物線的對稱軸上存在一點Q使得△BPQ為等邊三角形,請直接寫出此時直線AP的函數表達式.

【考點】二次函數綜合題.
【答案】(1)y=x2-2x-3.
(2)G(,).
(3)y=x+或y=x.
(2)G(
2
+
3
2
-
13
4
(3)y=
3
3
3
3
-
3
3
-
3
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/23 16:30:1組卷:1756引用:7難度:0.1
相似題
-
1.如圖,直線
與x軸、y軸分別交于點B、A,拋物線y=-x2+bx+c經過點B,與y軸交于點C(0,4).y=-12x+2
(1)求拋物線的函數表達式;
(2)點P是x軸上方拋物線上的動點,過點P作PD⊥x軸于點D,若以點P、D、B為頂點的三角形與△AOB相似,求點P的坐標.發布:2025/5/24 1:0:1組卷:358引用:2難度:0.3 -
2.在平面直角坐標系xOy中,拋物線y=
x2+bx+c過點A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點為P(m,n)(m>0).
ⅰ.如果S△OBP=3,設直線x=k,在這條直線的右側原拋物線和新拋物線均呈上升趨勢,求k的取值范圍;
ⅱ.點P在原拋物線上,新拋物線交y軸于點Q,且∠BPQ=120°,求點P的坐標.發布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+3ax(a為常數,a<0)與x軸交于O,A兩點,點B為拋物線的頂點,點D是線段OA上的一個動點,連接BD并延長與過O,A,B三點的⊙P相交于點C,過點C作⊙P的切線交x軸于點E.
(1)①求點A的坐標;②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當,∠CAE=∠OBE時,a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發布:2025/5/24 1:0:1組卷:575引用:1難度:0.3