如圖,直線y=kx+2與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B.
(1)求直線的解析式和拋物線的解析式;
(2)若M(m,0)為x軸上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P、N.
①在第一象限內(nèi),求線段PN的最大值;
②若以O(shè)、B、N、P為頂點(diǎn)的四邊形是平行四邊形時,求m的值.

【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)拋物線的解析式為y=-x2+x+2;
(2)①線段PN的最大值是;
②m的值為2或1或或.
7
3
(2)①線段PN的最大值是
9
4
②m的值為2或1或
3
-
17
2
3
+
17
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 21:0:1組卷:38引用:1難度:0.3
相似題
-
1.綜合與探究.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)C作AB的平行線,交拋物線于點(diǎn)D,P為拋物線上一動點(diǎn),過點(diǎn)P作直線CD的垂線,垂足為E,與x軸交于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);
(2)當(dāng)m<-1,且時,探究四邊形ABDE能否成為平行四邊形,并說明理由;EFPF=23
(3)當(dāng)m>0時,連接AC,PC,拋物線上是否存在點(diǎn)P,使∠PCE與∠BAC互余?若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.發(fā)布:2025/5/25 3:30:2組卷:134引用:1難度:0.2 -
2.在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1(a≠0)經(jīng)過點(diǎn)A(2,1),頂點(diǎn)為點(diǎn)B.
(1)用含a的代數(shù)式表示b;
(2)若a>0,設(shè)拋物線y=ax2+bx+1(a≠0)的對稱軸為直線l,過A作AM⊥l于點(diǎn)M,且MB=2AM,當(dāng)m-2≤x≤m時,拋物線的最高點(diǎn)的縱坐標(biāo)為17,求m的值;
(3)若點(diǎn)C的坐標(biāo)為(-5,-1),將點(diǎn)C向右平移9個單位長度得到點(diǎn)D,當(dāng)拋物線y=ax2+bx+1(a≠0)與線段CD有兩個交點(diǎn)時,直接寫出a的取值范圍.發(fā)布:2025/5/25 3:30:2組卷:176引用:2難度:0.2 -
3.已知拋物線y=ax2+x+c經(jīng)過A(-1,0)、B(2,0)、C三點(diǎn),直線y=mx+
交拋物線于A、D兩點(diǎn),交y軸于點(diǎn)G.12
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AD上方拋物線上的一點(diǎn),作PF⊥x軸,垂足為F,交AD于點(diǎn)N,且點(diǎn)N將線段PF分為1:2的兩部分.
①求點(diǎn)P的坐標(biāo);
②過點(diǎn)P作PM⊥AD于點(diǎn)M,若直線l到直線AD的距離是PM的2倍,請直接寫出直線l的解析式.發(fā)布:2025/5/25 4:0:1組卷:494引用:4難度:0.4
相關(guān)試卷