如圖,要建一個圓形噴水池,在池中心豎直安置一根水管,在水管的頂端A安一個噴水頭,使噴出的拋物線形水柱與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m.以水管與地面的交點為原點,原點與水柱落地處所在直線為x軸,水管所在直線為y軸,建立平面直角坐標系,每個單位長度表示1m.

(1)求水管OA的長度.
(2)如圖2,P(x,y)是圖中拋物線上一動點,點P′與點P關(guān)于y軸對稱,畫出點P'所在的拋物線的草圖,并直接寫出點P'所在拋物線的解析式及自變量的取值范圍.
(3)將水管OA噴水頭往上平移34m,求水柱落地處離池中心的距離.
3
4
【考點】二次函數(shù)綜合題.
【答案】(1)OA=;
(2)y=-x2-x+(-3≤x≤0);
(3)水柱落地處離池中心的距離為1+m.
9
4
(2)y=-
3
4
3
2
9
4
(3)水柱落地處離池中心的距離為1+
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/18 17:0:9組卷:207引用:3難度:0.4
相似題
-
1.如圖1.拋物線
與x軸交于A、B兩點,與y軸交于點C,連接BC,已知點B(4,0).y=-34x2+bx+c
(1)若C(0,3),求拋物線的解析式.
(2)在(1)的條件下,P(-2,m)為該拋物線上一點,Q是x軸上一點求的最小值,并求此時點Q的坐標.PQ+35BQ
(3)如圖2.過點A作BC的平行線,交y軸于點D,交拋物線于另一點E.若DE=7AD,求c的值.發(fā)布:2025/5/26 0:30:1組卷:145引用:1難度:0.3 -
2.如圖1,拋物線y=ax2-
x+c與x軸交于點A(-6,0)和B,與y軸交于點C(0,-8),點D是線段OC上一個動點,且不與點O,C重合,連接AD,在△BOC內(nèi)部做矩形DEFG,其中點E在OB邊上,點F,G在BC邊上.13
(1)求拋物線y=ax2-x+c的函數(shù)表達式;13
(2)設(shè)OD=m,△ACD的面積為S1,矩形DEFG的面積為S2,n=,則n與m的函數(shù)表達式為 (寫出自變量的取值范圍);S1S2
(3)在圖2的平面直角坐標系中,點P在(2)中得出的函數(shù)圖象上,作PM⊥m軸于點M,連接OP,當圖1中DF=2時,圖2中△POM與圖1中△AOD相似,請直接寫出此時圖2中點P的坐標.10發(fā)布:2025/5/26 0:30:1組卷:287引用:1難度:0.3 -
3.如圖,在平面直角坐標系中,線段AB的兩個端點的坐標分別為A(-2,-2)、B(1,1).拋物線y=ax2+bx+c(a>0)交y軸于點C,頂點P在線段AB上運動,當頂點P與點A重合時,點C的坐標為(0,0),設(shè)點P的橫坐標為m.
(1)求a的值.
(2)用含m的代數(shù)式表示點C的縱坐標,并求當m為何值時,點C的縱坐標最小,寫出最小值.
(3)當點C在y軸的負半軸上且點C的縱坐標隨m的增大而增大時,求m的取值范圍.
(4)過點P作x軸的垂線交拋物線y=-2x2+于點Q,將線段PQ繞點P順時針旋轉(zhuǎn)90°得到線段PQ',連結(jié)QQ'.當△PQQ'的邊與坐標軸有四個公共點時,直接寫出m的取值范圍.12發(fā)布:2025/5/26 0:30:1組卷:275引用:1難度:0.2
相關(guān)試卷