如圖1,在直角坐標(biāo)系中,拋物線y=ax2+bx+4與x,y軸分別交于點A,B,C,已知點A的坐標(biāo)是(4,0),OA=4OB,動點P在此拋物線上.
(1)求拋物線的表達(dá)式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)如圖2,若動點P在第一象限內(nèi)(圖1中的其它條件不變),過點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線,垂足為F,連接EF,以線段EF的中點G為圓心,以EF為直徑作⊙G,當(dāng)⊙G最小時,求出點P的坐標(biāo).

【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的表達(dá)式是y=-x2+3x+4;
(2)存在點P,使得△ACP是以AC為直角邊的直角三角形,P的坐標(biāo)為(2,6)或(-2,-6);
(3)點P的坐標(biāo)是(,2).
(2)存在點P,使得△ACP是以AC為直角邊的直角三角形,P的坐標(biāo)為(2,6)或(-2,-6);
(3)點P的坐標(biāo)是(
3
+
17
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/26 3:30:1組卷:172引用:1難度:0.1
相似題
-
1.已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正
半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.發(fā)布:2025/5/28 2:30:1組卷:587引用:65難度:0.1 -
2.如圖,二次函數(shù)y=x2+bx+c的圖象與x軸只有一個公共點P,與y軸的交點為Q.過點Q的直線y=2x+m與x軸交于點A,與這個二次函數(shù)的圖象交于另一點B,若S△BPQ=3S△APQ,求這個二次函數(shù)的解析式.
發(fā)布:2025/5/28 3:30:1組卷:266引用:5難度:0.1 -
3.已知拋物線y=x2+px+q上有一點M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當(dāng)點M為(1,-1997)時,求整數(shù)x1、x2.發(fā)布:2025/5/28 2:0:5組卷:254引用:1難度:0.5
相關(guān)試卷