【閱讀理解】我國古人運用各種方法證明勾股定理,如圖①,用四個直角三角形拼成正方形,通過證明可得中間也是一個正方形.其中四個直角三角形直角邊長分別為a、b,斜邊長為c.圖中大正方形的面積可表示為(a+b)2,也可表示為c2+4×12ab,即(a+b)2=c2+4×12ab,所以a2+b2=c2.
【嘗試探究】美國第二十任總統伽菲爾德的“總統證法”如圖②所示,用兩個全等的直角三角形拼成一個直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根據拼圖證明勾股定理.
【定理應用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所對的邊長分別為a、b、c.
求證:a2c2+a2b2=c4-b4.

1
2
1
2
【答案】【嘗試探究】見解析;
【定理應用】見解析.
【定理應用】見解析.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:1615引用:15難度:0.6
相似題
-
1.10.《時代數學學習》雜志2007年3月將改版為《時代學習報?數學周刊》,其徽標是我國古代“弦圖”的變形(見示意圖).該圖可由直角三角形ABC繞點O同向連續旋轉三次(每次旋轉90°)而得.因此有“數學風車”的動感.假設中間小正方形的面積為1,整個徽標(含中間小正方形)的面積為92,AD=2,則徽標的外圍周長為( ?。?/h2>
A.40 B.44 C.46 D.48 發布:2025/1/25 8:0:2組卷:366引用:2難度:0.6 -
2.如圖是中國古代數學家趙爽用來證明勾股定理的弦圖示意圖,它是由四個全等的直角三角形和一個小正方形EFGH組成,恰好拼成一個大正方形ABCD,連結EG并延長交CD于點P.若AE=3EF=3,則DP的長為( )
A. 207B. 209C.3 D. 157發布:2025/5/22 3:30:2組卷:581引用:4難度:0.4 -
3.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結論正確的是 .(填序號即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發布:2024/12/23 12:0:2組卷:460引用:3難度:0.6