如圖,已知拋物線y=12x2+bx+c與直線y=12x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(-3,0).
(1)求此拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB-MD|的值最大,并求出這個最大值;
(3)點P為y軸右側拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P,使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
1
2
1
2
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/2 1:30:2組卷:2880引用:8難度:0.1
相似題
-
1.如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的表達式;
(2)如圖1,若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求此時E點的坐標;
(3)如圖2,在x軸上是否存在一點D使得△ACD為等腰三角形?若存在,請求出所有符合條件的點D的坐標;若不存在,請說明理由.發布:2025/6/3 8:30:1組卷:782引用:5難度:0.2 -
2.在平面直角坐標系中,二次函數y=ax2+bx+4(a<0)的圖象與x軸交于點A(-2,0)和B(4,0),與y軸交于點C,直線BC與對稱軸交于點D.
(1)求二次函數的解析式;
(2)若拋物線y=ax2+bx+4(a<0)的對稱軸上有一點M,以O、C、D、M為頂點的四邊形是平行四邊形時,求點M的坐標.發布:2025/6/3 9:0:1組卷:465引用:3難度:0.5 -
3.如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求拋物線的解析式.
(2)點D為第一象限內拋物線上的一動點,作DE⊥x軸于點E,交BC于點F,過點F作BC的垂線與拋物線的對稱軸和y軸分別交于點G,H,設點D的橫坐標為m.
①求DF+HF的最大值;
②連接EG,是否存在點D,使△EFG是等腰三角形.若存在,直接寫出m的值;若不存在,說明理由.發布:2025/6/3 9:30:1組卷:475引用:2難度:0.2