如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B在第一象限內(nèi),且使得AB=4,OB=3.
(1)試判斷△AOB的形狀,并說明理由;
(2)在第二象限內(nèi)是否存在一點(diǎn)P,使得△POB是以O(shè)B為腰的等腰直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)如圖2,點(diǎn)C為線段OB上一動點(diǎn),點(diǎn)D為線段BA上一動點(diǎn),且始終滿足OC=BD.求AC+OD的最小值.

【考點(diǎn)】三角形綜合題.
【答案】(1)直角三角形,理由見解析;(2)存在,(-)或(-);(3).
12
5
,
9
5
3
5
,
21
5
58
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/15 8:0:9組卷:1939引用:11難度:0.2
相似題
-
1.已知等腰三角形ABC,∠F=2∠ABC,CD=kBD,∠FGC=α.
(1)如圖1,當(dāng)k=1時(shí),
①探究DG與CE之間的數(shù)量關(guān)系;
②探究BE,CG與CE之間的關(guān)系(用含α的式子表示).
(2)如圖2,當(dāng)k≠1時(shí),探究BE,CG與CE之間的數(shù)量關(guān)系(用含k,α的式子表示).發(fā)布:2025/5/24 11:30:1組卷:343引用:3難度:0.2 -
2.已知:在△ABC中,AB=AC=10,BC=16,點(diǎn)P、D分別在射線CB、射線AC上,且滿足∠APD=∠ABC.
(1)當(dāng)點(diǎn)P在線段BC上時(shí),如圖1.
①如果CD=4.8,求BP的長;
②設(shè)B、P兩點(diǎn)的距離為x,AP=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
(2)當(dāng)BP=1時(shí),求△CPD的面積.(直接寫出結(jié)論,不必給出求解過程)發(fā)布:2025/5/24 12:0:1組卷:310引用:1難度:0.1 -
3.如圖,在△ABC中,∠A=α(0°<α≤90°),將BC邊繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)(180°-α)得到線段CD.
(1)判斷∠B與∠ACD的數(shù)量關(guān)系并證明;
(2)將AC邊繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α得到線段CE,連接DE與AC邊交于點(diǎn)M(不與點(diǎn)A,C重合).
①用等式表示線段DM,EM之間的數(shù)量關(guān)系,并證明;
②若AB=a,AC=b,直接寫出AM的長.(用含a,b的式子表示)發(fā)布:2025/5/24 14:0:2組卷:1301引用:9難度:0.2