在直角梯形AA1B1B中,A1B1∥AB,AA1⊥AB,AB=AA1=2A1B1=6,直角梯形AA1B1B繞直角邊AA1旋轉一周得到如下圖的圓臺A1A,已知點P,Q分別在線段CC1,BC上,二面角B1-AA1-C1的大小為θ.
(1)若θ=120°,CP=23CC1,AQ⊥AB,證明:PQ∥平面AA1B1B;
(2)若θ=90°,點P為CC1上的動點,點Q為BC的中點,求PQ與平面AA1C1C所成最大角的正切值,并求此時二面角Q-AP-C的余弦值.
CP
=
2
3
C
C
1
【考點】二面角的平面角及求法;直線與平面所成的角.
【答案】(1)證明見解析;
(2)PQ與平面AA1C1C所成最大角的正切值為,此時二面角Q-AP-C的余弦值為.
(2)PQ與平面AA1C1C所成最大角的正切值為
5
2
2
89
89
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:392引用:7難度:0.2
相似題
-
1.如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F分別是PA,PC的中點.
(Ⅰ)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
(Ⅱ)設(Ⅰ)中的直線l與圓O的另一個交點為D,且點Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E-l-C的大小為β.求證:sinθ=sinαsinβ.DQ=12CP發布:2025/1/20 8:0:1組卷:922引用:12難度:0.1 -
2.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點.12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大小.發布:2025/1/2 8:0:1組卷:141引用:1難度:0.6 -
3.如圖,AB是圓O的直徑,PA垂直于圓所在的平面,C是圓周上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=2,PA=2,求二面角C-PB-A的度數.2發布:2025/1/28 8:0:2組卷:33引用:1難度:0.5