【問題情境】
在一次數學興趣小組活動中,小昕同學將一大一小兩個三角板按照如圖1所示的方式擺放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.
【問題探究】
小昕同學將三角板DEB繞點B按順時針方向旋轉.
(1)如圖2,當點E落在邊AB上時,延長DE交BC于點F,求BF的長.
(2)若點C、E、D在同一條直線上,求點D到直線BC的距離.

(3)連接DC,取DC的中點G,三角板DEB由初始位置(圖1),旋轉到點C、B、D首次在同一條直線上(如圖3),求點G所經過的路徑長.
(4)如圖4,G為DC的中點,則在旋轉過程中,點G到直線AB的距離的最大值是 734734.

7
3
4
7
3
4
【考點】幾何變換綜合題.
【答案】
7
3
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:3846引用:6難度:0.3
相似題
-
1.已知點M,N是直線l上自左向右的兩點,且MN=8,點P是MN的中點,點Q是直線l上一點(不與點M,N重合),直線m經過點Q,MA⊥直線m于點A,NB⊥直線m于點B,連接PA,PB.
(1)如圖1,當點Q在點P,N之間時,求證:PA=PB;
(2)如圖2,當點Q在點N的右側時,若PN=2NQ,且∠AQM=30°,求AB和AP的長度.發布:2025/5/22 17:0:1組卷:74引用:1難度:0.3 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數;
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉60°得△CMH,E點對應點為M,G點的對應點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.如圖1,在Rt△ABC中,∠BAC=90°,∠ACB=60°,AC=1,點A1,B1為邊AC,BC的中點,連接A1B1,將△A1B1C繞點C逆時針旋轉α(0°≤α≤360°).
(1)如圖1,當α=0°時,=;BB1,AA1所在直線相交所成的較小夾角的度數是 ;BB1AA1
(2)將△A1B1C繞點C逆時針旋轉至圖2所示位置時,(1)中結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)當△A1B1C繞點C逆時針旋轉過程中,請直接寫出S△ABA1的最大值,S△ABA1=.發布:2025/5/22 19:0:1組卷:432引用:3難度:0.4