線段和角是我們初中數(shù)學(xué)常見的平面幾何圖形,它們的表示方法、和差計(jì)算以及線段的中點(diǎn)、角的平分線的概念等有很多相似之處,所以研究線段或角的問題時(shí)可以運(yùn)用類比的方法.
(1)特例感知:
如圖1,已知AB=10cm,點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn).若BC=6cm,則線段DE=55cm.
(2)數(shù)學(xué)思考:
如圖1,已知AB=10cm,若C是線段AB上的一個(gè)動點(diǎn),點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn),線段DE的長會發(fā)生變化嗎?說明理由.
(3)知識遷移:
如圖2,OB是∠AOC內(nèi)部的一條射線,把三角尺中60°角的頂點(diǎn)放在點(diǎn)O處,轉(zhuǎn)動三角尺,當(dāng)三角尺的邊OD平分∠AOB時(shí),在角尺的另一邊OE與正好平分∠BOC,求∠AOC的度數(shù).
【考點(diǎn)】三角形綜合題.
【答案】5
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:126引用:1難度:0.6
相似題
-
1.如圖所示,在平面直角坐標(biāo)系內(nèi),A(0,
),B(-1,0),C(1,0),D點(diǎn)在y軸的負(fù)半軸上,且∠OCD=30°,現(xiàn)將∠ADC繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),角的一邊與線段CA或其延長線相交于E,另一邊與線段AB或其延長線相交于F.3
(1)當(dāng)E、F兩點(diǎn)分別在線段CA、CB延長線上時(shí),連接EF,如圖所示,試探究線段BF、EF、CE有何數(shù)量關(guān)系,并說明理由.
(2)在旋轉(zhuǎn)的過程中是否存在S△DBF:S△ADF=1:4?若存在,請求出F點(diǎn)的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/26 14:30:2組卷:48引用:1難度:0.1 -
2.材料一:如圖①,點(diǎn)C把線段AB分成兩部分(AC>BC),若
=ACAB,那么稱線段AB被點(diǎn)C黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn).類似地,對于實(shí)數(shù):a1<a2<a3,如果滿足(a2-a1)2=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數(shù).BCAC
材料二:如果一條直線l把一個(gè)面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點(diǎn)C作一條直線交BD邊于點(diǎn)E,過點(diǎn)D作DF∥EC交△ABC的一邊于點(diǎn)F,連接EF,交CD于G.S1S=S2S1
問題:
(1)若實(shí)數(shù)0<a<1,a為0,1的黃金數(shù),求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黃金分割線嗎?為什么?發(fā)布:2025/5/26 11:0:2組卷:38引用:3難度:0.2 -
3.如圖,在△ABC中,∠C=90°,AC=3,BC=4,CD⊥AB于D,點(diǎn)E在斜邊AB上,過點(diǎn)E作直線與△ABC的直角邊相交于點(diǎn)F,設(shè)AE=x,△AEF的面積為y.
(1)求線段AD的長;
(2)若EF⊥AB,當(dāng)點(diǎn)E在線段AB上移動點(diǎn)(E不與AB重合時(shí)),
①求y與x的函數(shù)關(guān)系式(寫出自變量x的取值范圍)
②當(dāng)x取何值時(shí),y有最大值?并求出這個(gè)最大值.發(fā)布:2025/5/26 15:0:1組卷:31引用:1難度:0.2