在△ABC中,∠ACB=90°,CD⊥AB,垂足為點D,點E為CA延長線上一點,且AC=2AE=2,BC=kCE,延長ED交BC于點F.

(1)若AE=AD,請判斷△CDF的形狀,并給出證明;
(2)若k=1,求證:EDDF=CACF;
(3)若k=43,求ED的長.
ED
DF
CA
CF
4
3
【考點】相似形綜合題.
【答案】(1))△CDF是等邊三角形,證明見解答過程;(2)證明見解答過程;(3)ED=.
65
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:509引用:3難度:0.3
相似題
-
1.【了解概念】
在凸四邊形中,若一邊與它的兩條鄰邊組成的兩個內角相等,則稱該四邊形為鄰等四邊形,這條邊叫做這個四邊形的鄰等邊.
【理解運用】
(1)鄰等四邊形ABCD中,∠A=30°,∠B=70°,則∠C的度數為.
(2)如圖,凸四邊形ABCD中,P為AB邊的中點,△ADP∽△PDC,判斷四邊形ABCD是否為鄰等四邊形;并證明你的結論;
【拓展提升】
(3)在平面直角坐標系中,AB為鄰等四邊形ABCD的鄰等邊,且AB邊與x軸重合,已知A(-1,0),C(m,2),D(2,33),若在邊AB上使∠DPC=∠BAD的點P有且僅有1個,請直接寫出m的值.3發布:2025/5/25 5:30:2組卷:860引用:3難度:0.3 -
2.(1)閱讀解決
華羅庚是我國著名的數學家,他推廣的優選法,就是以黃金分割法為指導,用最可能少的試驗次數,盡快找到生產和科學實驗中最優方案的一種科學試驗方法.
黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,這個比例被公認為最能引起美感的比例,因此被稱為黃金分割.
如圖①,點B把線段AC分成兩部分,如果=BCAB,那么稱點B為線段AC的黃金分割點,它們的比值為ABAC.5-12
在圖①中,若AB=12m,則BC的長為 cm;
(2)問題解決
如圖②,用邊長為40m的正方形紙片進行如下操作:對折正方形ABCD得折痕EF,連接CE,將CB折疊到CE上,點B對應點為H,折痕為CG.
證明:G是AB的黃金分割點;
(3)拓展探究
如圖③在邊長為m的正方形ABCD的邊AD上任取點E(AE>DE),連接BE,作CF⊥BE,交AB于點F,延長EF,CB交于點P.發現當PB與BC滿足某種關系時,E、F恰好分別是AD、AB的黃金分割點.請猜想這一發現,并說明理由,發布:2025/5/25 8:0:2組卷:188引用:1難度:0.3 -
3.如圖,在直角坐標系中,Rt△OAB的直角頂點A在x軸上,OA=4,AB=3.動點M從點A出發,以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發,以每秒1.25個單位長度的速度,沿OB向終點B移動.當兩個動點運動了x秒(0<x<4)時,解答下列問題:
(1)求點N的坐標(用含x的代數式表示);
(2)設△OMN的面積是S,求S與x之間的函數表達式;當x為何值時,S有最大值?最大值是多少?
(3)在兩個動點運動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.發布:2025/5/25 2:30:1組卷:4642引用:26難度:0.5