在平面直角坐標系中,拋物線y=12x2+2x的圖象與x軸的交點為A,點M為拋物線的頂點,點B在y軸上,且OA=OB,直線AB與拋物線在第一象限交于點C,

如圖①.
(1)求直線AB的函數解析式;
(2)點M的坐標為 (-2,-2)(-2,-2),點C的坐標為 (2,6)(2,6),cos∠ABO=2222;
連接OC,若過點O的直線交線段AC于點P,將△AOC的面積分成1:2的兩部分,則點P的坐標為 (-2,2)或(0,4)(-2,2)或(0,4);
(3)在y軸上找一點Q,使得△AMQ的周長最小.具體作法如圖②,作點A關于y軸的對稱點A',連接MA'交y軸于點Q,連接AM、AQ,此時△AMQ的周長最小.請求出點Q的坐標;
(4)在坐標平面內是否存在點N,使以點A、O、C、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
1
2
x
2
2
2
2
2
【考點】二次函數綜合題.
【答案】(-2,-2);(2,6);;(-2,2)或(0,4)
2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:52引用:1難度:0.3
相似題
-
1.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44引用:1難度:0.1 -
2.在平面直角坐標系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
(1)求拋物線的解析式;
(2)當點F在第一象限運動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當S取最大值時,求點F的坐標;
(3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標.發布:2025/5/23 3:0:1組卷:458引用:3難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經過B、C兩點,與x軸的另一個交點為A.
(1)如圖1,求b、c的值;
(2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設點P的橫坐標為t,△ADC的面積為S,求S與t的函數關系式;
(3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為,求E點坐標.54發布:2025/5/23 3:0:1組卷:205引用:1難度:0.1