【基礎(chǔ)鞏固】
(1)如圖1,P是矩形ABCD內(nèi)部一點,求證:PA2+PC2=PB2+PD2.請你將下面的證明過程補充完整.
證明:過P分別作邊AB,AD的平行線EF,GH交AD于E,交BC于F,交AB于G,交CD于H.設(shè)PE=a,PF=b,PG=c,PH=d.
(請在框內(nèi)證明:四邊形AGPE是矩形) |
∴PA2+PC2=PB2+PD2=
a2+b2+c2+d2
a2+b2+c2+d2
(用關(guān)于a,b,c,d的代數(shù)式填空)【嘗試應(yīng)用】
(2)如圖2,P為正方形ABCD內(nèi)一點,且PA:PB:PC=1:
3
:
5
【拓展提高】
(3)如圖3,在Rt△ABC中,∠BAC=90°,點D,E是斜邊BC上的三等分點.若AD=3,AE=4,求BC的長.

【考點】四邊形綜合題.
【答案】a2+b2+c2+d2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:336引用:1難度:0.1
相似題
-
1.如圖,四邊形ABCD、EBGF都是正方形.
(1)如圖1,若AB=4,EC=,求FC的長;17
(2)如圖2,正方形EBGF繞點B逆時針旋轉(zhuǎn),使點G正好落在EC上,猜想AE、EB、EC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在(2)條件下,∠BCE=22.5°,EC=2,點M為直線BC上一動點,連接EM,過點M作MN⊥EC,垂足為點N,直接寫出EM+MN的最小值.發(fā)布:2025/5/24 19:0:1組卷:233引用:2難度:0.5 -
2.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=
,把Rt△ABC沿AB翻折得到Rt△ABD,過點B作BE⊥BC,交AD于點E,點F是線段BE上一點,且tan∠ADF=3.則下列結(jié)論中:①AE=BE;②△BED∽△ABC;③BD2=AD?DE;④AF=32.正確的有 .(把所有正確答案的序號都填上)2133發(fā)布:2025/5/24 19:30:1組卷:526引用:3難度:0.3 -
3.在矩形ABCD中,AB=6,BC=8,
【問題發(fā)現(xiàn)】
(1)如圖1,E為邊DC上的一個點,連接BE,過點C作BE的垂線交AD于點F,試猜想BE與CF的數(shù)量關(guān)系并說明理由.
【類比探究】
(2)如圖2,G為邊AB上的一個點,E為邊CD延長線上的一個點,連接GE交AD于點H,過點C作GE的垂線交AD于點F,試猜想GE與CF的數(shù)量關(guān)系并說明理由.
【拓展延伸】
(3)如圖3,點E從點B出發(fā)沿射線BC運動,連接AE,過點B作AE的垂線交射線CD于點F,過點E作BF的平行線,過點F作BC的平行線,兩平行線交于點H,連接DH,在點E的運動的路程中,線段DH的長度是否存在最小值?若存在,求出線段DH長度的最小值;若不存在,請說明理由.發(fā)布:2025/5/24 20:0:2組卷:309引用:3難度:0.2