探索三角形的內角與外角平分線(三角形的外角是三角形的一邊與另一邊的延長線所組成的角):
(1)如圖①,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,則∠BOC=115°115°;此時∠A與∠BOC有怎樣的關系?試說明理由;
(2)如圖②,BO平分∠ABC,CO平分∠ACE,若∠A=50°,則∠BOC=25°25°;此時∠A與∠BOC有怎樣的關系?試說明理由;
(3)如圖③,△ABC的外角∠CBE,∠BCF的平分線BO,CO相交于點O,若∠A=50°,則∠BOC=65°65°;此時∠A與∠BOC有怎樣的關系?(不需說明理由)
【考點】三角形綜合題.
【答案】115°;25°;65°
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/19 2:0:1組卷:50引用:1難度:0.3
相似題
-
1.定義:由一個三角形的三條中線圍成的三角形稱為原三角形的中線三角形.
問題:設中線三角形的面積為S1,原三角形的面積為S2.求的值.S1S2
特例探索:
(1)正三角形的邊長為2,則中線長為 ,所以=.S1S2
(2)如圖1,每個小正方形邊長均為1,點A,B,C,D,E,F,G均在網格點上.
①△CFG △ABC的中線三角形.(填“是”或“不是”)
②S△ABC=,S△CFG=,所以=.S1S2
一般情形:
如圖2,△ABC的三條中線分別是AD,BE,CF,將AD平移至CG,連結FG.
(3)求證:△CFG是△ABC的中線三角形;
(4)猜想的值,并說明理由.S1S2發布:2025/5/22 7:30:2組卷:144引用:1難度:0.1 -
2.在△ABC中,∠ACB=90°,AC=BC,點D在△ABC內部,且滿足∠ACD-∠BCD=2∠DAB,若△BCD的面積為13,則CD=.
發布:2025/5/22 10:0:1組卷:498引用:3難度:0.3 -
3.【問題提出】
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數量關系?
【問題探究】
(1)如圖(2),當點D,F重合時,
①AF與BE的數量關系是 .
②=.CFBF-AF
(2)如圖(1),當點D,F不重合時,求的值.CFBF-AF
(3)【問題拓展】
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數),點E在△ABC內部,直線AD與BE交于點F,求出線段AF,BF,CF之間的數量關系(用一個含有k的等式表示).發布:2025/5/22 8:0:2組卷:447引用:2難度:0.2