綜合實踐
在學習全等三角形的知識時,數學興趣小組發現這樣一個模型:它是由兩個共頂點且頂角相等的等腰三角形構成的,在相對位置變化的同時,始終存在一對全等三角形.興趣小組成員經過研討給出定義:如果兩個等腰三角形的頂角相等,且頂角的頂點互相重合,則稱此圖形為“手拉手全等模型”.因為頂點相連的四條邊,可以形象地看作兩雙手,所以通常稱為“手拉手模型”,如圖1,△ABC與△ADE都是等腰三角形,其中∠BAC=∠DAE,則△ABD≌△ACE(SAS).

[初步把握]如圖2,△ABC與△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,則有 △ABD△ABD≌△ACE△ACE.
[深入研究]如圖3,已知△ABC,以AB、AC為邊分別向外作等邊△ABD和等邊△ACE,并連接BE,CD,求證:BE=CD.
[拓展延伸]如圖4,在兩個等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,連接BD,CE,交于點P,請判斷BD和CE的關系,并說明理由.
【考點】三角形綜合題.
【答案】△ABD;△ACE
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:2297引用:11難度:0.3
相似題
-
1.如圖所示,在平面直角坐標系內,A(0,
),B(-1,0),C(1,0),D點在y軸的負半軸上,且∠OCD=30°,現將∠ADC繞D點逆時針旋轉,角的一邊與線段CA或其延長線相交于E,另一邊與線段AB或其延長線相交于F.3
(1)當E、F兩點分別在線段CA、CB延長線上時,連接EF,如圖所示,試探究線段BF、EF、CE有何數量關系,并說明理由.
(2)在旋轉的過程中是否存在S△DBF:S△ADF=1:4?若存在,請求出F點的坐標;若不存在,請說明理由.發布:2025/5/26 14:30:2組卷:48引用:1難度:0.1 -
2.材料一:如圖①,點C把線段AB分成兩部分(AC>BC),若
=ACAB,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點.類似地,對于實數:a1<a2<a3,如果滿足(a2-a1)2=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數.BCAC
材料二:如果一條直線l把一個面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點C作一條直線交BD邊于點E,過點D作DF∥EC交△ABC的一邊于點F,連接EF,交CD于G.S1S=S2S1
問題:
(1)若實數0<a<1,a為0,1的黃金數,求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黃金分割線嗎?為什么?發布:2025/5/26 11:0:2組卷:38引用:3難度:0.2 -
3.如圖,在△ABC中,∠C=90°,AC=3,BC=4,CD⊥AB于D,點E在斜邊AB上,過點E作直線與△ABC的直角邊相交于點F,設AE=x,△AEF的面積為y.
(1)求線段AD的長;
(2)若EF⊥AB,當點E在線段AB上移動點(E不與AB重合時),
①求y與x的函數關系式(寫出自變量x的取值范圍)
②當x取何值時,y有最大值?并求出這個最大值.發布:2025/5/26 15:0:1組卷:31引用:1難度:0.2