課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內經過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據小明的方法思考:
(1)由已知圖能得到△ADC≌EDB的理由是 SASSAS.
(2)求得AD的取值范圍是 1<AD<71<AD<7.
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.求證:AC=BF.
【考點】三角形綜合題.
【答案】SAS;1<AD<7
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/9/6 4:0:8組卷:87引用:5難度:0.5
相似題
-
1.某興趣小組探索等腰三角形中線段比值問題,部分探索活動如下:
(1)如圖1,在△ABC中,AB=AC,∠ABC=60°,D,E分別是BC,AC邊上的點,∠AFE=∠ABC,則的值為 .BEAD
(2)如圖2,在△ABC中,AB=AC,∠ABC=45°,D,E分別是BC,AC邊上的點,∠AFE=∠ABC,請你猜想的值,并給出證明;BEAD
(3)如圖3,在△ABC中,AB=AC,,D,E分別是BC,CA邊延長線上的點,∠DFB=∠ABC,請直接寫出cos∠ABC=512的值.BEAD發布:2025/5/26 0:0:1組卷:153引用:1難度:0.4 -
2.在△ABC中,AB=AC,BC=12,E為邊AC的中點,
(1)如圖1,過點E作EH⊥BC,垂足為點H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點D、O、F.
①如圖2,當∠BAC=90°時,求BD的長;
②如圖3,設tan∠ACB=x,BD=y,求y與x之間的函數表達式和tan∠ACB的最大值.發布:2025/5/26 1:0:1組卷:278引用:2難度:0.1 -
3.如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠BAD=°,∠DEC=°;
(2)當DC等于多少時,△ABD與△DCE全等?請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數.若不可以,請說明理由.發布:2025/5/26 2:30:2組卷:976引用:8難度:0.3