有足夠多的長方形和正方形卡片(如圖1),分別記為1號,2號,3號卡片.
(1)如果選取4張3號卡片,拼成如圖2所示的一個正方形,請用2種不同的方法表示陰影部分的面積(用含m,n的式子表示).
①方法1:(m-n)2(m-n)2;方法2:(m+n)2-4mn(m+n)2-4mn;
②請寫出(m+n)2,(m-n)2,4mn三個代數式之間的等量關系:(m+n)2=(m-n)2+4mn(m+n)2=(m-n)2+4mn.
(2)若|a+b-6|+|ab-4|=0,求(a-b)2的值.
(3)如圖3,選取1張1號卡片,2張2號卡片,3張3號卡片,可拼成一個長方形(無縫隙不重疊),請畫出該長方形,根據圖形的面積關系,分解因式:m2+3mn+2n2=m2+2n2+3mn=(m+2n)(m+n)m2+2n2+3mn=(m+2n)(m+n).

【答案】(m-n)2;(m+n)2-4mn;(m+n)2=(m-n)2+4mn;m2+2n2+3mn=(m+2n)(m+n)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:233引用:2難度:0.7
相似題
-
1.已知a,b為直角三角形ABC的兩直角邊,△ABC的周長為18,斜邊為8,面積為5.5,則代數式a2-ab+b2的值是( )
A.89 B.-89 C.67 D.-67 發布:2025/6/6 5:0:1組卷:30引用:1難度:0.7 -
2.閱讀下列材料:
材料1:在處理分數和分式問題時,有時由于分子比分母大,或者分子的次數高于分母的次數,在實際運算時往往難度比較大,這時我們可以將假分數(分式)拆分成一個整數(整式)與一個真分數(式)的和(差)的形式,通過對簡單式的分析來解決問題,我們稱之為分離整數法.此法在處理分式或整除問題時頗為有效.如將分式拆分成一個整式與一個分式(分子為整數)的和的形式.x2-3x-1x+2
解:設x+2=t,則x=t-2.∴原式=(t-2)2-3(t-2)-1t=t-7+t2-7t+9t9t
∴=x-5+x2-3x-1x+29x+2
材料2:配方法是初中數學思想方法中的一種重要的解題方法,配方法最終的目的就是配成完全平方式,利用完全平方式來求解,它的應用非常廣泛,在解方程、求最值、證明等式、化簡根式、因式分解等方面都經常用到.如:當a>0,b>0時,∵+ab=(ba)2+(ab)2=(ba-ab)2+2ba
∴當=ab,即a=b時,ba+ab有最小值2.ba
根據以上閱讀材料回答下列問題:
(1)將分式拆分成一個整式與一個分子為整數的分式的和的形式,則結果為 ;x2+x+3x+1
(2)已知分式的值為整數,求整數x的值;4x2-10x+82x-1
(3)當-1<x<1時,求代數式的最大值及此時x的值.-12x4+14x2-5-2x2+2發布:2025/6/6 4:30:1組卷:387引用:4難度:0.4 -
3.三角形的三邊長為(a+b)2=c2+2ab,則這個三角形是( ?。?/h2>
A.等邊三角形 B.直角三角形 C.鈍角三角形 D.銳角三角形 發布:2025/6/6 10:0:1組卷:43難度:0.7