拋物線y=ax2-103x+8與x軸交于點A(4,0),B(t,0)兩點,與y軸交于點C,直線BC:y=kx+8,點P在拋物線上,設點P的橫坐標為m.
?
(1)求拋物線的表達式和t,k的值;
(2)如圖1,過點P作x軸的垂線與直線BC交于點M,過點C作CH⊥PM,垂足為點H,若△CHM∽△PBM,求m的值;
(3)如圖2,若點P在直線BC下方的拋物線上,過點P作PQ⊥BC,垂足為Q,求CQ+13PQ的最大值.
y
=
a
x
2
-
10
3
x
+
8
CQ
+
1
3
PQ
【考點】二次函數綜合題.
【答案】(1)y=x2-x+8,k=-,t=6;
(2)m=;
(3).
1
3
10
3
4
3
(2)m=
25
4
(3)
121
12
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/31 8:0:9組卷:853引用:3難度:0.2
相似題
-
1.已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正
半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.發布:2025/5/28 2:30:1組卷:587引用:65難度:0.1 -
2.已知拋物線y=x2+px+q上有一點M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當點M為(1,-1997)時,求整數x1、x2.發布:2025/5/28 2:0:5組卷:254引用:1難度:0.5 -
3.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸相交于點C.連接AC、BC,A、C兩點的坐標分別為A(-3,0)、C(0,
),且當x=-4和x=2時二次函數的函數值y相等.3
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發,均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,二次函數圖象的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?如果存在,請求出點Q的坐標;如果不存在,請說明理由.發布:2025/5/28 1:30:2組卷:1106引用:26難度:0.1