在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于⊙C的反稱點,如圖為點P及其關(guān)于⊙C的反稱點P′的示意圖.
特別地,當(dāng)點P′與圓心C重合時,規(guī)定CP′=0.
(1)當(dāng)⊙O的半徑為1時.
①分別判斷點M(2,1),N(32,0),T(1,3)關(guān)于⊙O的反稱點是否存在?若存在,求其坐標(biāo);
②點P在直線y=-x+2上,若點P關(guān)于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=-33x+23與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于⊙C的反稱點P′在⊙C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.
3
2
3
3
3
3
【考點】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:3388引用:10難度:0.2
相似題
-
1.如圖,⊙O的直徑AB=8,點D是半圓上的一動點(點D與A,B不重合),點C是弧BD的中點,過點C作CE⊥AD交射線AD于點E,連接CD、BC.
(1)求證:CE是⊙O切線;
(2)當(dāng)∠BCD=150°時,求陰影面積;
(3)在點D運動過程中,設(shè)AD=x,DE=y,求y與x之間的函數(shù)關(guān)系式,并求出AD?DE的最大值.發(fā)布:2025/6/12 14:0:2組卷:62引用:1難度:0.2 -
2.圓心到弦的距離叫做該弦的弦心距.
【數(shù)學(xué)理解】如圖①,在⊙O中,AB是弦,OP⊥AB,垂足為P,則OP的長是弦AB的弦心距.
(1)若⊙O的半徑為5,弦AB的弦心距為3,則AB的長為 .
(2)若⊙O的半徑確定,下列關(guān)于AB的長隨著OP的長的變化而變化的結(jié)論:
①AB的長隨著OP的長的增大而增大;②AB的長隨著OP的長的增大而減??;③AB的長與OP的長無關(guān).
其中所有正確結(jié)論的序號是 .
(3)【問題解決】若弦心距等于該弦長的一半,則這條弦所對的圓心角的度數(shù)為 °.
(4)已知如圖②給定的線段EF和⊙O,點Q是⊙O內(nèi)一定點.過點Q作弦AB,滿足AB=EF,請問這樣的弦可以作 條.發(fā)布:2025/6/12 11:30:1組卷:50引用:2難度:0.4 -
3.如圖,四邊形ABCD內(nèi)接于⊙O,AC為對角線,AC=AD,直徑AE交CD于點F,連接DE.
(1)如圖1,求證:AE⊥CD;
(2)如圖2,連接BD交AC于點G,∠AGD+∠ADC=180°,求證:;?BC=?CD
(3)如圖3,在(2)的條件下,過點G作GH⊥CD于H,過點A作AM∥BD交⊙O于點M,若BG=GH,AE=10,求線段AM的長.發(fā)布:2025/6/12 9:0:1組卷:66引用:5難度:0.3