如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為A(m,0)、B(0,n)且|m-n-4|+2n-8=0,點P從A出發(fā),以每秒1個單位的速度沿射線AO勻速運動,設(shè)點P運動時間為t秒.
(1)求OA、OB的長;
(2)連接PB,若△POB的面積不大于4且不等于0,求t的范圍;
(3)過P作直線AB的垂線,垂足為C,直線PC與y軸交于點D,在點P運動的過程中,是否存在這樣的點P,使△DOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.
|
m
-
n
-
4
|
+
2
n
-
8
=
0
【考點】三角形綜合題.
【答案】(1)OA=8,OB=4;
(2)t的范圍是6≤t≤10且t≠8;
(3)存在這樣的點P,使△DOP≌△AOB,t的值是4或12.
(2)t的范圍是6≤t≤10且t≠8;
(3)存在這樣的點P,使△DOP≌△AOB,t的值是4或12.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/27 19:0:8組卷:30引用:1難度:0.4
相似題
-
1.如圖1和圖2,AD是△ABC中BC邊上的中線,E為AC邊上的一點,過點B作BF∥AC交ED的延長線于點F.
(1)求證:△BDF≌△CDE;
(2)如圖1,若CE=10,AE:BF=2:5,試求AC的長;
(3)如圖2,當(dāng)E為AC邊的中點時,若△ABC的面積為20,請直接寫出△BDF的面積是多少.發(fā)布:2025/6/8 15:30:1組卷:23引用:1難度:0.4 -
2.如圖,在長方形ABCD中,AB=8,AD=4.P是BC的中點,點Q從點A出發(fā),以每秒2個單位長度的速度沿A→D→C→B→A的方向向終點A運動,設(shè)點Q運動的時間為x秒.
(1)點Q在運動的路線上和點C之間的距離為4時,x=秒.
(2)若△DPQ的面積為S,用含x的代數(shù)式表示S(0≤x<7).
(3)若點Q從A出發(fā)3秒后,點M以每秒6個單位長度的速度沿A→B→C→D的方向運動,M點運動到達(dá)D點后立即沿著原路原速返回到A點,當(dāng)M與Q在運動的路線上相距不超過4時,請直接寫出相應(yīng)x的取值范圍.發(fā)布:2025/6/8 18:0:1組卷:139引用:1難度:0.2 -
3.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,4),且滿足(a+4)2+
=0,過C作CB⊥x軸于B.b-4
(1)求三角形ABC的面積.
(2)若線段AC交y軸于Q(0,2),在y軸上是否存在點P,使得S△ABC=S△QCP,若存在,求出P的坐標(biāo);若不存在,請說明理由.
(3)若過B作BD∥AC交y軸于D,且AE、DE平分∠CAB、∠ODB,如圖2,則∠AED與∠CAB、∠ODB有什么關(guān)系,并加以證明.發(fā)布:2025/6/8 17:0:2組卷:99引用:3難度:0.3