如圖,直線y=12x+2交y軸于點A,交x軸于點B,拋物線y=-14x2+bx+c經過點A,點B,且交x軸于另一點C.
(1)求點A,點B,點C的坐標并求拋物線的解析式;
(2)在直線AB上方的拋物線上有一點P,求四邊形ACBP面積的最大值及此時點P的坐標;
(3)將線段OA繞x軸上的動點Q(t,0)(t<0)逆時針旋轉90°得到線段O1A1,若線段O1A1與拋物線只有一個公共點,請結合函數圖象,求t的取值范圍.
1
2
1
4
【考點】二次函數綜合題.
【答案】(1)A(0,2),B(-4,0),C(2,0),y=-x2-x+2;(2)當P(-2,2)時,S四邊形ACBP的最大值為8;(3)-2≤t≤3-.
1
4
1
2
17
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/4 8:0:9組卷:246引用:3難度:0.4
相似題
-
1.如圖,已知拋物線
與x軸負半軸交于點A,與x軸正半軸交于點B,與y軸交于點C,點P拋物線上一動點(P與C不重合).y=1m(x+2)(x-m)
(1)求點A、C的坐標;
(2)當S△ABC=6時,拋物線上是否存在點P(C點除外)使∠PAB=∠BAC?若存在,請求出點P的坐標,若不存在,請說明理由;
(3)當AP∥BC時,過點P作PQ⊥x軸于點Q,求BQ的長.發布:2025/5/23 2:30:1組卷:175引用:3難度:0.3 -
2.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44引用:1難度:0.1 -
3.綜合與探究
已知拋物線C1:y=ax2+bx-5(a≠0).
(1)當拋物線經過(-1,-8)和(1,0)兩點時,求拋物線的函數表達式.
(2)當b=4a時,無論a為何值,直線y=m與拋物線C1相交所得的線段AB(點A在點B的左側)的長度始終不變,求m的值和線段AB的長.
(3)在(2)的條件下,將拋物線C1沿直線y=m翻折得到拋物線C2,拋物線C1,C2的頂點分別記為G,H.是否存在實數a使得以A,B,G,H為頂點的四邊形為正方形?若存在,直接寫出a的值;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:463引用:3難度:0.3