試卷征集
          加入會員
          操作視頻

          如圖,在平面直角坐標系中,直線y=-x+3交x軸于點B,交y軸于點C,直線AD交x軸于點A,交y軸于點D,交直線BC于點E
          -
          1
          2
          7
          2
          ,且CD=1.

          (1)求直線AD解析式;
          (2)點P從B點出發沿線段BA方向以1個單位/秒的速度向終點A運動(點P不與A,B兩點重合),設點P的運動時間為t,則是否存在t,使得△AEP為等腰直角三角形?若存在,請求出t的值,若不存在,請說明理由;
          (3)在(2)的條件下,點P出發的同時,點Q從C點出發沿射線CO方向運動,當點P到達終點時,點Q也停止運動,連接AQ,PQ,設△APQ的面積為S,S與t的函數關系式為
          S
          =
          3
          2
          t
          2
          -
          12
          t
          +
          21
          2
          0
          t
          1
          a
          t
          -
          1
          t
          -
          7
          1
          t
          7
          ,其圖象如圖2所示,結合圖1、圖2的信息,請求出a的值及當△APQ的面積取得最大值時AQ的長.

          【考點】二次函數綜合題
          【答案】(1)y=x+4;
          (2)存在,t=3.5;
          (3)
          a
          =
          -
          3
          2
          97
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:290引用:3難度:0.3
          相似題
          • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
            (1)求該拋物線的解析式;
            (2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
            (3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
            ①m取何值時,過點P、M、N、F的平面圖形不是梯形?
            ②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.

            發布:2025/1/2 8:0:1組卷:83引用:1難度:0.5
          • 2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為

            發布:2024/12/23 17:30:9組卷:3906引用:38難度:0.4
          • 3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
            5
            ,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-4
            5
            ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是(  )

            發布:2024/12/26 1:30:3組卷:2686引用:7難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正