如圖,在平面直角坐標系中,直線y=-x+3交x軸于點B,交y軸于點C,直線AD交x軸于點A,交y軸于點D,交直線BC于點E(-12,72),且CD=1.

(1)求直線AD解析式;
(2)點P從B點出發沿線段BA方向以1個單位/秒的速度向終點A運動(點P不與A,B兩點重合),設點P的運動時間為t,則是否存在t,使得△AEP為等腰直角三角形?若存在,請求出t的值,若不存在,請說明理由;
(3)在(2)的條件下,點P出發的同時,點Q從C點出發沿射線CO方向運動,當點P到達終點時,點Q也停止運動,連接AQ,PQ,設△APQ的面積為S,S與t的函數關系式為S=32t2-12t+212(0≤t<1) a(t-1)(t-7)(1<t<7)
,其圖象如圖2所示,結合圖1、圖2的信息,請求出a的值及當△APQ的面積取得最大值時AQ的長.
(
-
1
2
,
7
2
)
S
=
3 2 t 2 - 12 t + 21 2 ( 0 ≤ t < 1 ) |
a ( t - 1 ) ( t - 7 ) ( 1 < t < 7 ) |
【考點】二次函數綜合題.
【答案】(1)y=x+4;
(2)存在,t=3.5;
(3),.
(2)存在,t=3.5;
(3)
a
=
-
3
2
97
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:290引用:3難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發布:2025/1/2 8:0:1組卷:83引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發布:2024/12/23 17:30:9組卷:3906引用:38難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是( )5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發布:2024/12/26 1:30:3組卷:2686引用:7難度:0.7