在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).
(1)求二次函數(shù)的表達式及點A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△CFD,連接CB,BF.
①當(dāng)點F落在該二次函數(shù)的圖象上時,求AC的長;
②設(shè)AC=n,其中0<n<2,試用含n的式子表示CB2+BF2,并求出使CB2+BF2取得最小值時點F的坐標(biāo).
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+4,點A的坐標(biāo)為(-2,0);
(2)①AC=;
②F(1,1).
(2)①AC=
3
②F(1,1).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:77引用:1難度:0.3
相似題
-
1.二次函數(shù)
的圖象與x軸交于A、兩點(點A在點B左邊),與y軸交于C點,且∠ACB=90°.y=-12x2+32x+m-2
(1)求這個二次函數(shù)的解析式;
(2)設(shè)計兩種方案:作一條與y軸不重合,與△A BC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的,寫出所截得的三角形三個頂點的坐標(biāo)(注:設(shè)計的方案不必證明).14發(fā)布:2025/5/28 4:30:1組卷:84引用:1難度:0.9 -
2.已知直線y=-2x+3與拋物線y=x2相交于A、B兩點,O為坐標(biāo)原點,那么△OAB的面積等于.
發(fā)布:2025/5/28 4:30:1組卷:238引用:6難度:0.5 -
3.拋物線y=ax2與直線x=1,x=2,y=1,y=2組成的正方形有公共點,則a的取值范圍是
發(fā)布:2025/5/28 4:30:1組卷:472引用:14難度:0.7
相關(guān)試卷