如圖,拋物線y=-33x2-3x+433與x軸交于A,B兩點(A點在B點的左側)與y軸交于點C,已知點D(0,-3).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一點,當△PBD面積是833時,過P作PQ⊥x軸于點Q,若M為拋物線對稱軸上的一動點,過M作y軸的垂線,垂足為點N,連接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ',將△PBQ'沿直線BD平移,記平移中的△PBQ'為△P'B'Q″,在平移過程中,設直線P'B'與x軸交于點E.則是否存在這樣的點E,使△B′EQ″為等腰三角形?若存在,求此時OE的長.

3
3
3
4
3
3
3
8
3
3
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:86引用:1難度:0.2
相似題
-
1.如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.發布:2025/6/23 12:30:1組卷:27643引用:102難度:0.5 -
2.已知拋物線y=x2-2mx+m2+m-1(m是常數)的頂點為P,直線l:y=x-1.
(1)求證:點P在直線l上;
(2)當m=-3時,拋物線與x軸交于A,B兩點,與y軸交于點C,與直線l的另一個交點為Q,M是x軸下方拋物線上的一點,∠ACM=∠PAQ(如圖),求點M的坐標;
(3)若以拋物線和直線l的兩個交點及坐標原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的m的值.發布:2025/6/23 13:0:10組卷:3408引用:53難度:0.2 -
3.如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.發布:2025/6/23 11:30:2組卷:1904引用:25難度:0.1