如圖,在△ABC中,∠B=30°,∠C=70°,AE⊥BC于E,AD平分∠BAC,
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,F(xiàn)E⊥BC”,其他條件不變,求∠DFE的度數(shù);
(3)如圖③,若把∠B=30°,∠C=70°,AE⊥BC改為“∠C>∠B,EF⊥BC”,其他條件不變,你能直接寫出∠DFE與∠C,∠B之間的數(shù)量關(guān)系嗎?
?
【考點】幾何變換綜合題.
【答案】(1)20°;
(2)20°;
(3)∠DFE=∠C-∠B.
(2)20°;
(3)∠DFE=
1
2
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:81引用:1難度:0.2
相似題
-
1.如圖,已知∠MON=α(0°<α<90°),OP是∠MON的平分線,A,B分別在OP,OM上,且AB∥ON.以點A為中心,將線段AO旋轉(zhuǎn)到AC處,使點O的對應(yīng)點C恰好在射線BM上,在射線ON上取一點D,使得∠BAD=180°-α.
(1)①依題意補(bǔ)全圖;
②求證:OC=OD+AD;
(2)連接CD,若CD=OD,求α的度數(shù),并直接寫出的值.ADOD發(fā)布:2025/6/20 3:30:1組卷:417引用:5難度:0.1 -
2.圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片△ABC和△CDE疊放在一起(C與C′重合)的圖形.
(1)操作:固定△ABC,將△CDE繞點C按順時針方向旋轉(zhuǎn)20°,連結(jié)AD,BE,如圖2,則可證△CBE≌△CAD,依據(jù) ,進(jìn)而得到線段BE=AD,依據(jù) .
(2)操作:若將圖1中的△CDE,繞點C按順時針方向旋轉(zhuǎn)120°,使點B、C、D在同一條直線上,連結(jié)AD、BE,如圖3.
①線段BE與AD之間是否仍存在(1)中的結(jié)論?若是,請證明;若不是,請直接寫出BE與AD之間的數(shù)量關(guān)系;
②求∠APB的度數(shù).
(3)若將圖1中的△CDE,繞點C按逆時針方向旋轉(zhuǎn)一個角度α(0<α<360°),當(dāng)α等于多少度時,△BCD的面積最大?請直接寫出答案.發(fā)布:2025/6/20 9:30:2組卷:776引用:7難度:0.3 -
3.[實踐與探究]
將△ABC(AB>AC)沿AD折疊,使點C剛好落在AB邊上的點E處,展開如圖.
[操作觀察]圖①中,AB=8,AC=6.
①BE=.
②若△ACD的面積是9,則△ABD的面積是 .
[理解應(yīng)用]如圖②,若∠C=2∠B,試說明:AB=AC+CD.
[拓展延伸]如圖③,若∠BAC=60°,點G為AC的中點,且AG=5.點P是AD上的一個動點,連結(jié)PG、PC,直接寫出(PG+PC)2的最小值.發(fā)布:2025/6/20 8:0:2組卷:64引用:2難度:0.2