【感知】如圖1,Rt△ABC中,∠C=90°,AC=12AB,則∠B的度數為 30°30°;
【探究】如圖2,四邊形ABCD是一張邊長為4的正方形紙片,E,F分別為AB,CD的中點,沿過點D的折痕將紙片翻折,使點A落在EF上的點A′處,折痕交AE于點G,試求∠ADG的度數和AG的長;
【拓展】若矩形紙片ABCD按圖3所示的方式折疊,B,D兩點恰好重合于對角線AC的中點O(如圖4),當AB=9時,請直接寫出EF的長.

AC
=
1
2
AB
【考點】四邊形綜合題.
【答案】30°
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:150引用:2難度:0.4
相似題
-
1.(1)如圖1,將直角三角板的直角頂點放在正方形ABCD上,使直角頂點與D重合,三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.求證:DP=DQ;
(2)如圖2,將(1)中“正方形ABCD”改成“矩形ABCD”,且DC=2DA,其他條件不變,試猜想DQ與DP的數量關系,并說明理由;
(3)在(2)的條件下,若PQ=10,DA=4,則AP的長度為 .(直接寫出答案)發布:2025/5/21 17:0:2組卷:60引用:2難度:0.5 -
2.【基礎問題】
如圖①,矩形ABCD中,點E為AB邊上一點,連接DE,作EF⊥DE交BC于點F,且DE=FE,求證:△AED≌△BFE.
【拓展延伸】
(1)如圖②,點E為平行四邊形ABCD內部一點,EA=EB,DA⊥AE,作DF⊥BA交BA延長線于點F,若DA=2EA,AB=5,則平行四邊形ABCD的面積為 ;
(2)如圖③,在正方形ABCD中,AD=6,在CD邊上取一點E,使EC=2DE,將△AED沿AE翻折到△AED′位置,作D′F⊥AB于點F,在D′F右側作∠FGD'=90°,則△FGD'面積的最大值為 .發布:2025/5/21 17:0:2組卷:160引用:1難度:0.3 -
3.如圖,矩形ABCD中,AB=2
,BC=4,連結對角線AC,E為AC的中點,F為AB邊上的動點,連結EF,作點C關于EF的對稱點C′,連結C′E,C′F,若△EFC′與△ACF的重疊部分(△EFG)面積等于△ACF的3,則BF=.14發布:2025/5/21 18:0:1組卷:1667引用:8難度:0.1
相關試卷