(1)已知:等腰△ABC,∠A=120°,AB=AC,若AB=1,則BC的長是 33.
(2)在△ABC中,AB=AC,∠BAC=90°,點D是△ABC外一點,點D與點C在直線AB的異側,且點D,A,C不共線,連接AD,BD,CD,滿足∠ADB=45°.求證:BD2+2AD2=DC2.
(3)如圖,已知四邊形ABCD中,∠ABC=∠BCD=90°,AB=2,AC=4,DC=6,點E是線段DC上的一個動點(點E不與點C和點D重合),連接BE,過點C作CF⊥BE交BE于點F,點G在線段BF上,且滿足∠FCG=30°,點M是線段AC上的動點,點N是線段AB上的動點.當點G在△ABC的內部時,是否存在△MNG周長的最小值?如果存在,請你求出△MNG周長的最小值;如果不存在,請你說明理由.

3
3
【考點】四邊形綜合題.
【答案】
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/22 23:0:1組卷:614引用:3難度:0.1
相似題
-
1.在五邊形ABCDE中,四邊形ABCD是矩形,△ADE是以E為直角頂點的等腰直角三角形.CE與AD交于點G,將直線EC繞點E順時針旋轉45°交AD于點F.
(1)求證:∠AEF=∠DCE;
(2)判斷線段AB,AF,FC之間的數量關系,并說明理由;
(3)若FG=CG,且AB=2,求線段BC的長.發布:2025/5/24 8:0:1組卷:328引用:2難度:0.2 -
2.[問題提出]
正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
[問題探究]
如圖①,△ABC是等邊三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離PF、PE、PD分別為h1、h2、h3,設△ABC的邊長是a,面積為S.過點O作OM⊥AB.
∴OM=Rcos∠AOB=Rcos60°,AM=Rsin12∠AOB=Rsin60°,AB=2AM=2Rsin60°12
∴S△ABC=3S△AOB=3×AB×OM=3R2sin60°cos60°①12
∵S△ABC又可以表示為a(h1+h2+h3)②12
聯立①②得a(h1+h2+h3)=3R2sin60°cos60°12
∴×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°12
∴h1+h2+h3=3Rcos60°
[問題解決]
如圖②,五邊形ABCDE是正五邊形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距PH、PM、PN、PI、PL分別為h1、h2、h3、h4、h5,參照(1)的分析過程,探究h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
[性質應用]
(1)正六邊形(半徑是R)內任意一點P到各邊距離之和h1+h2+h3+h4+h5+h6=.
(2)如圖③,正n邊形(半徑是R)內任意一點P到各邊距離之和h1+h2+hn-1+hn=.發布:2025/5/24 8:0:1組卷:149引用:1難度:0.2 -
3.綜合與探究
(1)如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數量關系,并證明你的結論.
(2)【類比探究】
如圖2,在矩形ABCD中,AB=3,AD=5,點E,F分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數量關系,并證明你的結論.
(3)【拓展延伸】
如圖3,在Rt△ABC中,∠ABC=90°,D為BC中點,連接AD,過點B作BE⊥AD于點F,交AC于點E,若AB=3,BC=4,求BE的長.發布:2025/5/24 9:0:1組卷:760引用:4難度:0.1