試卷征集
          加入會員
          操作視頻

          如圖1,在△ABC中,∠BAC=90°,AB=AC,過點A作AD⊥BC于點D,點M為線段AD上一點(不與A,D重合),在線段BD上取點N,使DM=DN,連接AN,CM.

          (1)觀察猜想:線段AN與CM的數量關系是
          AN=CM
          AN=CM
          ,AN與CM的位置關系是
          AN⊥CM
          AN⊥CM

          (2)類比探究:將△DMN繞點D旋轉到如圖2所示的位置,請寫出AN與CM的數量關系及位置關系,并就圖2的情形說明理由;
          (3)問題解決:已知AD=3
          2
          ,DM=3,將△DMN繞點D旋轉,當以A、D、M、N四點為頂點的四邊形為平行四邊形時,直接寫出BN的長.

          【考點】四邊形綜合題
          【答案】AN=CM;AN⊥CM
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2025/5/23 12:0:2組卷:139引用:3難度:0.1
          相似題
          • 1.如圖,在矩形ABCD中,AD=
            2
            AB,∠BAD的平分線交BC于點E.DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正確的有(  )

            發布:2025/5/23 22:30:2組卷:1273引用:4難度:0.2
          • 2.【問題提出】
            (1)如圖①,OP為∠AOB的平分線,PC⊥OA于點C,PD⊥OB于點D,若S△OPC=3,則S△OPD=

            【問題探究】
            (2)如圖②,a、b是兩條平行的直線,且a、b之間的距離為12,點A為直線a上一點,點B、C為直線b上兩點,且點B在點C的左側,若∠BAC=45°,求BC的最小值;
            【問題解決】
            (3)如圖③,四邊形ABCD是園林規劃局欲修建的一塊平行四邊形園林的大致示意圖,沿對角線BD修一條人行走道,沿∠BAD的平分線AP(點P在BD上)修一條園林灌溉水渠.根據規劃要求,∠ABC=120°,AP=120米,且使得平行四邊形ABCD的面積盡可能小,問平行四邊形ABCD的面積是否存在最小值?若存在,求出其最小值,若不存在,請說明理由.

            發布:2025/5/23 22:30:2組卷:137引用:1難度:0.2
          • 3.如圖,在菱形ABCD中,AB=4,∠BAD=60°,點P從點A出發,沿線段AD以每秒1個單位長度的速度向終點D運動,過點P作PQ⊥AB于點Q,作PM⊥AD交直線AB于點M,交直線BC于點F,設△PQM與菱形ABCD重疊部分圖形的面積為S(平方單位),點P的運動時間為t(s)(0≤t≤4).
            (1)當點M與點B重合時,t=
            s;
            (2)當t為何值時,△APQ≌△BMF;
            (3)求S與t的函數關系式;
            (4)以線段PQ為邊,在PQ右側作等邊△PQE,當2≤t≤4時,請直接寫出點E運動路徑的長.

            發布:2025/5/23 21:0:1組卷:200引用:1難度:0.1
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正