已知拋物線C1:y=ax2-2ax+c經(jīng)過(guò)點(diǎn)C(2,3),與x軸交于A(-1,0),B兩點(diǎn),與y軸交于D點(diǎn).
(1)求拋物線C1的解析式;
(2)如圖1,P為直線AC上方拋物線C1上的動(dòng)點(diǎn),過(guò)P點(diǎn)作PE⊥AC于點(diǎn)E,若AE=3PE,求P點(diǎn)坐標(biāo);
(3)如圖2,將拋物線C1沿x軸平移得C2,使C2的頂點(diǎn)落在y軸上,若過(guò)定點(diǎn)F(0.5,1)的直線交拋物線于M、N兩點(diǎn),過(guò)M點(diǎn)的直線y=-x+b與拋物線交于點(diǎn)P,求證:直線NP必過(guò)定點(diǎn).

【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;
(2)P(1,4);
(3)直線NP必過(guò)定點(diǎn)(,).證明見解答.
(2)P(1,4);
(3)直線NP必過(guò)定點(diǎn)(
1
2
13
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:553引用:2難度:0.2
相似題
-
1.如圖,拋物線y=-
x2+bx+c與x軸交于A(-1,0),B(4,0),與y軸交于點(diǎn)C.連接AC,BC,點(diǎn)P在拋物線上運(yùn)動(dòng).12
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)P在第四象限,點(diǎn)Q在PA的延長(zhǎng)線上,當(dāng)∠CAQ=∠CBA+45°時(shí),求點(diǎn)P的坐標(biāo).發(fā)布:2025/6/7 20:0:2組卷:80引用:1難度:0.2 -
2.如圖①,定義:直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點(diǎn).將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過(guò)點(diǎn)A,B,D的拋物線P叫作直線l的“糾纏拋物線”,反之,直線l叫做拋物線P的“糾纏直線”,兩線“互為糾纏線”.
(1)已知直線l:y=-2x+2,則它的糾纏拋物線P的函數(shù)解析式是 .
(2)判斷y=-2x+2k與是否“互為糾纏線”并說(shuō)明理由.y=-1kx2-x+2k
(3)如圖②,已知直線l:y=-2x+4,它的糾纏拋物線P的對(duì)稱軸與CD相交于點(diǎn)E.點(diǎn)F在直線l上.點(diǎn)Q在拋物線P的對(duì)稱軸上,當(dāng)以點(diǎn)C,E,Q,F(xiàn)為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),直接寫出點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/7 21:0:1組卷:47引用:1難度:0.3 -
3.如圖,拋物線y=ax2+bx與x軸交于點(diǎn)A(-2,0),與反比例函數(shù)y=
圖象交于點(diǎn)B,過(guò)點(diǎn)B作BQ⊥y軸于點(diǎn)Q,BQ=1.3x
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),當(dāng)BP+OP的值最小時(shí),求線段QP的長(zhǎng);
(3)若點(diǎn)M是平面直角坐標(biāo)系內(nèi)任意一點(diǎn),在拋物線的對(duì)稱軸上是否存在一點(diǎn)D,使得以A,B,D,M為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 17:30:1組卷:37引用:1難度:0.4