在平面直角坐標系中,點O為坐標原點,直線AB與x軸正半軸交于點A,交y軸正半軸于點B,∠ABO=45°,AB=32.
(1)如圖1,求直線AB的解析式;
(2)如圖2,點C是第二象限內直線AB上一點,連接OC、CD,若OC=CD,設線段BD的長為t,△DCO的面積為s,求s與t的函數關系式;
(3)如圖3,在(2)問條件下,過點B作AC的垂線BE,點E在第一象限內,連接DE,若∠DCB-∠E=90°,且BE+BC=AB+2BD,求S的值.

AB
=
3
2
BE
+
BC
=
AB
+
2
BD
【考點】一次函數綜合題.
【答案】(1)直線AB解析式為y=-x+3;
(2)S=t2-;
(3)S=.
(2)S=
1
4
9
4
(3)S=
9
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:160引用:1難度:0.1
相似題
-
1.如圖,在平面直角坐標系中,B(-8,0),∠B=45°.
(1)如圖1,求直線AB的解析式;
(2)如圖2,點P、Q在直線AB上,點P在第二象限,橫坐標為t,點Q在第一象限,橫坐標為d,PQ=AB,求d與t之間的函數關系式(不要求寫出自變量的取值范圍);
(3)如圖3,在(2)的條件下,點C、點D在x軸的正半軸上(C在D的左側),連接AC、AD,∠ADO=2∠CAO,OC=2CD,點E是AC中點,連接DE、QE、QD,若S△DEQ=24,求t值.發(fā)布:2025/5/26 4:30:1組卷:213引用:1難度:0.1 -
2.【閱讀材料】
我們知道:一條直線經過等腰直角三角形的直角頂點,過另外兩個頂點分別向該直線作垂線,即可得“三垂直模型”.如圖①,在△ABC中,∠ACB=90°,AC=BC,分別過A、B向經過點C的直線作垂線,垂足分別為D、E,易證:△ADC≌△CEB.(無需證明)
(1)【問題探究】如果AC≠BC,其他條件不變,如圖②,求證:△ADC∽△CEB.
(2)【學以致用】如圖③,在平面直角坐標系中,∠AOB=90°,點A(1,2),點B在第二象限,,求AB所在直線的函數表達式.tanA=32
(3)【拓展應用】如圖④,在矩形ABCD中,AB=4,BC=6,點E為邊BC上一個動點,連結AE,將線段AE繞點E順時針旋轉90°,點A落在點P處,當點P在矩形ABCD外部時,連結PC、PD.當△DPC為直角三角形時,直接寫出BE的長.發(fā)布:2025/5/26 11:0:2組卷:269引用:1難度:0.2 -
3.如圖,直線y=
x+6分別與x軸、y軸交于點A、B,點C為線段AB上一動點(不與A、B重合),以C為頂點作∠OCD=∠OAB,射線CD交線段OB于點D,將射線OC繞點O順時針旋轉90°交射線CD于點E,連結BE.34
(1)證明:=CDDB;(用圖1)ODDE
(2)當△BDE為直角三角形時,求DE的長度;(用圖2)
(3)點A關于射線OC的對稱點為F,求BF的最小值.(用圖3)發(fā)布:2025/5/26 7:30:2組卷:1837引用:4難度:0.2