在△ABC中,若AD是∠BAC的角平分線,點E和點F分別在AB和AC上,且DE⊥AB,垂足為E,DF⊥AC,垂足為F(如圖(1)),則可以得到以下兩個結論:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有條件“AD是∠BAC的角平分線,點E和點F,分別在AB和AC上”,請探究以下兩個問題:
(1)若∠AED+∠AFD=180°(如圖(2)),則DE與DF是否仍相等?若仍相
等,請證明;否則請舉出反例.
(2)若DE=DF,則∠AED+∠AFD=180°是否成立?(只寫出結論,不證明)
【考點】全等三角形的判定與性質;角平分線的性質.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:578引用:9難度:0.5
相似題
-
1.已知:如圖,△ABC是等邊三角形,D是BC延長線上一點,連接AD,以AD為邊作等邊三角形ADE,連接CE.
(1)求證:AC+CD=CE;
(2)求∠DCE的度數.發布:2025/6/12 21:0:1組卷:367引用:5難度:0.3 -
2.如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=BC.O為AC中點,OE⊥OD交AB于點E,EF⊥CD于點F,交AC于點M,BO的延長線交DC于點G.若
,則下列結論正確的( )ADBC=13
①OE=OD;
②BG=CM;
③;S四邊形AEOD=14S△ABC
④.OEAD=102A.1個 B.2個 C.3個 D.4個 發布:2025/6/12 20:30:2組卷:168引用:3難度:0.4 -
3.在△ABD和△ACE中,AB=AD,AC=AE,AB⊥BC,AD⊥DE,
(1)寫出與∠EDF相等的角 ,并證明.
(2)求證:F是EC的中點.發布:2025/6/12 21:0:1組卷:424引用:1難度:0.3