若x+y+z=2,x2-(y+z)2=8時,x-y-z=44.
【考點】因式分解-運用公式法.
【答案】4
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/15 4:30:1組卷:2098引用:11難度:0.9
相似題
-
1.若
是關于字母a,b的二元一次方程ax+ay-b=7的一個解,代數式x2+2xy+y2-1的值是 .a=1b=-2發布:2025/6/15 17:30:2組卷:2146引用:10難度:0.5 -
2.閱讀下列材料,回答問題:
提公因式法、運用公式法是初中階段最常用的分解因式的方法,但有些多項式只單純用上述方法就無法分解.
第一,如分解因式:x2-2xy+y2-16,觀察這個式子發現,前三項符合完全平方公式,變形后與第四項結合再運用平方差公式進行分解,過程如下:
x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4),這種分解因式的方法叫“分組分解法”.
第二,如分解因式:x4+4,可以構造完全平方公式,過程如下:
x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2+2x)(x2+2-2x).
如分解因式:x3-x2-4,過程如下:
x3-x2-4=x3-2x2+x2-4=x2(x-2)+(x+2)(x-2)=(x-2)(x2+x+2),這種分解因式的方法叫“添項拆項法”.
(1)利用分組的思想方法分解因式:x2-4y2+x-2y;
(2)利用添項拆項法分解因式:x4+x2+1;
(3)求證:502+502×512+512是一個正整數的平方數.發布:2025/6/15 16:30:1組卷:226引用:1難度:0.5 -
3.下列各式中,能用平方差公式分解因式的是( )
A.x2+y2 B.x2-2x+1 C.-x2+y2 D.-x2-y2 發布:2025/6/15 17:30:2組卷:77引用:2難度:0.7