試卷征集
          加入會員
          操作視頻

          二次函數y=ax2+bx+4(a≠0)的圖象經過點A(-4,0),B(1,0),與y軸交于點C,點P為第二象限內拋物線上一點,連接BP、AC,交于點Q,過點P作PD⊥x軸于點D.
          (1)求二次函數的表達式;
          (2)連接BC,當∠DPB=2∠BCO時,求直線BP的表達式;
          (3)請判斷:
          PQ
          QB
          是否有最大值,如有請求出有最大值時點P的坐標,如沒有請說明理由.

          【考點】二次函數綜合題
          【答案】(1)y=-x2-3x+4;
          (2)y=-
          15
          8
          x+
          15
          8

          (3)點P的坐標為(-2,6).
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:4744引用:13難度:0.4
          相似題
          • 1.在平面直角坐標系中,已知拋物線y=-x2+2mx-m2+3m+1(m為常數).
            (1)當m=1時,求出拋物線的頂點坐標.
            (2)當拋物線的頂點到x軸的距離為4時,m的值.
            (3)當m=1時,M為對稱軸上一點,過點M作MN平行x軸,交拋物線于點N,當y軸將MN分成1:2時,求點M坐標.
            (4)當m=1時,已知A、B兩點均在拋物線y=-x2+2mx-m2+3m+1(m為常數)上,點A的橫坐標為a,點B的橫坐標為a+2,將拋物線上A、B兩點之間(含A、B兩點)的圖象記為M,當圖象M的最高點與最低點的縱坐標之差為2時,直接寫出a的值.

            發布:2025/6/14 17:0:2組卷:149引用:1難度:0.3
          • 2.已知二次函數y=mx2-2mx-3m(m>0)的圖象與x軸交于A,B兩點(點A在點B左側),頂點為C.
            (1)用含m的代數式表示頂點C的坐標為

            (2)求A,B兩點的坐標.
            (3)連接BC,AC,若△ABC為等邊三角形,求m的值.

            發布:2025/6/14 17:0:2組卷:321引用:3難度:0.5
          • 3.已知拋物線y=ax2+bx-4經過點A(2,0)、B(-4,0),與y軸交于點C.
            (1)求這條拋物線的解析式;
            (2)如圖1,點P是第三象限內拋物線上的一個動點,當四邊形ABPC的面積最大時,求點P的坐標;
            (3)如圖2,線段AC的垂直平分線交x軸于點E,垂足為D,M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最小?若存在,求出點G的坐標;若不存在,請說明理由.

            發布:2025/6/14 15:0:1組卷:3635引用:10難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正