甲、乙兩名圍棋學員進行圍棋比賽,規定每局比賽勝者得1分,負者得0分,平局雙方均得0分,比賽一直進行到一方比另一方多兩分為止,多得兩分的一方贏得比賽.已知每局比賽中,甲獲勝的概率為α,乙獲勝的概率為β,兩人平局的概率為γ(α+β+γ=1,α>0,β>0,γ≥0),且每局比賽結果相互獨立.
(1)若α=25,β=25,γ=15,求進行4局比賽后甲學員贏得比賽的概率;
(2)當γ=0時,
(i)若比賽最多進行5局,求比賽結束時比賽局數X的分布列及期望E(X)的最大值;
(ii)若比賽不限制局數,寫出“甲學員贏得比賽”的概率(用α,β表示),無需寫出過程.
α
=
2
5
β
=
2
5
γ
=
1
5
【答案】(1);
(2)(i)分布列見解析,期望最大值為;(ii).
44
625
(2)(i)分布列見解析,期望最大值為
13
4
α
2
α
2
+
β
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/20 8:0:8組卷:424引用:7難度:0.4
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間(30,150]內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區間(130,150]中參加全市座談交流的人數,求X的分布列及數學期望E(X).發布:2024/12/29 13:30:1組卷:133引用:7難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 A.m=0.1 B.n=0.1 C.E(Y)=-8 D.D(Y)=-7.8 發布:2024/12/29 13:0:1組卷:199引用:6難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數,則E(X)為( )
A.0 B.1 C.2 D.3 發布:2024/12/29 13:30:1組卷:138引用:6難度:0.7