問題呈現:下圖是小致復習全等三角形時遇到的一個問題并引發的思考,請幫助小致完成以下學習任務.
如圖,OC平分∠AOB,點P在OC上,M、N分別是OA、OB上的點,OM=ON,求證:PM=PN.
小致的思考:要證明PM=PN,只需證明△POM≌△PON即可.
請根據小致的思路,結合圖①,解出完整的證明過程.
結論應用:
(1)如圖②,在四邊形ABCD中,AB=AD+BC,∠DAB的平分線和∠ABC的平分線交于CD邊上點P,求證:PC=PD.
(2)在(1)的條件下,如圖③,若AB=10,tan∠PAB=12,當△PBC有一個內角是45°時,△PAD的面積是 8或4038或403.

1
2
40
3
40
3
【考點】三角形綜合題.
【答案】8或
40
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:325引用:2難度:0.3
相似題
-
1.如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F分別為AB,AC的中點,H為線段EF上一動點(不與點E,F重合),將線段AH繞點A逆時針方向旋轉90°得到AG,連接GC,HB.
(1)證明:△AHB≌△AGC;
(2)如圖2,連接GF,HG,HG交AF于點Q.
①證明:在點H的運動過程中,總有∠HFG=90°;
②若AB=AC=4,當EH的長度為多少時△AQG為等腰三角形?發布:2025/5/21 11:30:1組卷:1879引用:13難度:0.1 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內角相等,求∠APD的度數;
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發布:2024/12/23 18:30:1組卷:1770引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發,在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發,在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發,當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發布:2024/12/23 15:0:1組卷:187引用:3難度:0.1