如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,點A1、B1分別為邊AC、BC的中點,連接A1B1,將△A1B1C繞點C逆時針旋轉(zhuǎn)α(0°≤α≤360°).
(1)如圖1,當(dāng)α=0°時,易知AA1和BB1的位置關(guān)系為AA1⊥BB1;線段AA1和BB1的數(shù)量關(guān)系為 AA1=3BB1AA1=3BB1;
(2)將△A1B1C繞點C逆時針旋轉(zhuǎn)至圖2所示位置時,(1)中AA1和BB1的關(guān)系是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)當(dāng)△A1B1C繞點C逆時針旋轉(zhuǎn)過程中.
①△ABA1面積的最大值為 4343;
②當(dāng)A1、B1、A三點共線時,線段AA1的長為 3+352或35-323+352或35-32.

3
3
3
3
3
+
3
5
2
3
5
-
3
2
3
+
3
5
2
3
5
-
3
2
【考點】幾何變換綜合題.
【答案】AA1=BB1;4;或
3
3
3
+
3
5
2
3
5
-
3
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:159引用:1難度:0.1
相似題
-
1.【發(fā)現(xiàn)奧秘】
(1)如圖1,在等邊三角形ABC中,AB=2,點E是△ABC內(nèi)一點,連接AE,EC,BE,分別將AC,EC繞點C順時針旋轉(zhuǎn)60°得到DC,F(xiàn)C,連接AD,DF,EF.當(dāng)B,E,F(xiàn),D四個點滿足 時,BE+AE+CE的值最小,最小值為 .
【解法探索】
(2)如圖2,在△ABC中,∠ACB=90°,AC=BC,點P是△ABC內(nèi)一點,連接PA,PB,PC,請求出當(dāng)PA+PB+PC的值最小時∠BCP的度數(shù),并直接寫出此時PA:PB:PC的值.(提示:分別將PC,AC繞點C順時針旋轉(zhuǎn)60°得到DC,EC,連接PD,DE,AE)
【拓展應(yīng)用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,點P是△ABC內(nèi)一點,連接PA,PB,PC,直接寫出當(dāng)PA+PB+PC的值最小時,PA:PB:PC的值.發(fā)布:2025/5/26 0:30:1組卷:232引用:1難度:0.4 -
2.下面是某數(shù)學(xué)興趣小組對一個數(shù)學(xué)問題作的探究活動:
問題:
如圖1,已知,∠MON=60°,點A在邊OM上,點P是邊ON上一動點,以線段AP為斜邊作Rt△ACP,AC=PC,∠ACP=90°(C和O在AP的兩側(cè)),連接OC,將線段OC繞C逆時針旋轉(zhuǎn)90°至BC,連接OB.
A.SSS
B.SAS
C.AAS
D.ASA
(2)如圖2,小穎同學(xué)作BD⊥ON于D,她認為OA與BD存在某種數(shù)量關(guān)系,那么OA與BD是否有數(shù)量關(guān)系?如果有數(shù)量關(guān)系,請你寫出OA與BD的數(shù)量關(guān)系并說明理由;
(3)如圖1,小華說,當(dāng)OA=2,當(dāng)△AOP是直角三角形時,可求出OB2的值,請你直接寫出OB2的值.發(fā)布:2025/5/25 22:30:2組卷:142引用:2難度:0.1 -
3.如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F(xiàn)分別為AB,AC的中點,H為線段EF上一動點(不與點E,F(xiàn)重合),將線段AH繞點A逆時針方向旋轉(zhuǎn)90°得到AG,連接GC,HB.
(1)證明:△AHB≌△AGC;
(2)如圖2,連接GF,HG,HG交AF于點Q.①證明:在點H的運動過程中,總有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的長度.發(fā)布:2025/5/26 1:0:1組卷:181引用:1難度:0.3