已知函數f(x)=sinx,g(x)=lnx.
(1)求方程f(x)=f(π2-x)在[0,2π]上的解;
(2)求證:對任意的a∈R,方程f(x)=ag(x)都有解;
(3)設M為實數,對區間[0,2π]內的滿足x1<x2<x3<x4的任意實數xi(1≤i≤4),不等式M≥|f(x1)-f(x2)|+|f(x2)-f(x3)|+|f(x3)-f(x4)|都成立,求M的最小值.
π
2
【考點】函數與方程的綜合運用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:180引用:3難度:0.6
相似題
-
1.若{x|x2+px+q=0}={1,3},則p+q的值為( )
A.-3 B.3 C.-1 D.7 發布:2024/12/15 2:0:2組卷:17引用:3難度:0.8 -
2.已知函數f(x)=(x-1)|x-a|+4有三個不同的零點,則實數a的取值范圍是 .
發布:2024/12/29 6:30:1組卷:107引用:2難度:0.5 -
3.已知直線y=-x+2分別與函數
和y=ln(2x)的圖象交于點A(x1,y1),B(x2,y2),則( )y=12exA. >2eex1+ex2B.x1x2> e4C. >0lnx1x1+x2lnx2D. ex1+ln(2x2)>2發布:2024/12/29 11:0:2組卷:246引用:9難度:0.6