在△DEF中,DE=DF,點B在EF邊上,且∠EBD=60°,C是射線BD上的一個動點(不與點B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當點C在線段BD上時,
①若點C與點D重合,請根據題意補全圖1,并直接寫出線段AE與BF的數量關系為 AE=BFAE=BF;
②如圖2,若點C不與點D重合,請證明AE=BF+CD;
(2)當點C在線段BD的延長線上時,用等式表示線段AE,BF,CD之間的數量關系(直接寫出結果,不需要證明).

【考點】全等三角形的判定與性質.
【答案】AE=BF
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:9055引用:26難度:0.3
相似題
-
1.下面是證明等腰三角形性質定理“三線合一”的三種方法,選擇其中一種完成證明.
等腰三角形性質定理:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相
重合(簡記為:三線合一)方法一:
已知:如圖,△ABC中,AB=AC,AD平分∠BAC.
求證:BD=CD,AD⊥BC.方法二:
已知:如圖,△ABC中,AB=AC,點D為BC中點.
求證:∠BAD=∠CAD,AD⊥BC.方法三:
已知:如圖,△ABC中,AB=AC,AD⊥BC.
求證:BD=CD,∠BAD=∠CAD.發布:2025/5/22 10:30:1組卷:261引用:2難度:0.6 -
2.如圖,已知AD∥BC,AD=CB,AE=CF,求證:BE=DF.
發布:2025/5/22 11:0:1組卷:341引用:4難度:0.7 -
3.如圖,在Rt△ABC中,∠ACB=90°,△ABC的角平分線AD,BE相交于點O,過點O作OF⊥AD交BC的延長線于點F,交AC于點G,下列結論:①∠AOB=135°;②BD+AG=AB;③BA=BF;④S△ACD:S△ABD=AB:AC.其中正確結論的序號是 .
發布:2025/5/22 12:0:1組卷:175引用:1難度:0.4