如圖,直線AB:y=kx+b(k≠0)過點A(2,2),B(1,4).

(1)求直線AB的解析式;
(2)如圖2,點M,點N分別為x軸,y軸上一動點,求AM+MN+NB的最小值及此時點M的坐標;
(3)如圖3,在(2)問的條件下,過點B作l1垂直于y軸,點P為直線AB上一動點,點Q為直線l1上一動點,若△MPQ是以MQ為腰的等腰直角三角形,直接寫出所有滿足條件的點Q坐標.
【考點】一次函數綜合題.
【答案】(1)直線AB解析式為y=-2x+6;
(2)(1,0);
(3)點Q坐標為(13,4)或(5,4)或(-7,4)或(,4).
(2)(1,0);
(3)點Q坐標為(13,4)或(5,4)或(-7,4)或(
11
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/11 8:0:9組卷:1728引用:1難度:0.1
相似題
-
1.如圖,在平面直角坐標系中,直線y=kx+b與x軸交于點B(-5,0),與y軸交于點A,直線
過點A,與x軸交于點C,點P是x軸上方一個動點.y=-43x+4
(1)求直線AB的函數表達式;
(2)若點P在線段AB上,且S△APC=S△AOB,求點P的坐標;
(3)當 S△PBC=S△ABC時,動點M從點B出發,先運動到點P,再從點P運動到點C后停止運動.點M的運動速度始終為每秒1個單位長度,運動的總時間為t(秒),請直接寫出t的最小值.發布:2025/5/22 18:30:2組卷:670引用:1難度:0.3 -
2.給出如下定義:對于線段PQ,以點P為中心,把點Q逆時針旋轉60°得到點R,點R叫做線段PQ關于點P的“完美點”.
例如等邊△ABC中,點C就是線段AB關于點A的“完美點”.
在平面直角坐標系xOy中.
(1)已知點A(0,2),在A1(,1),A2(-3,1),A3(1,3),A4(1,-3)中,是線段OA關于點O的“完美點”;3
(2)直線y=x+4上存在線段BB′,若點B′恰好是線段BO關于點B的“完美點”,求線段BB′的長;
(3)若OC=4,OE=2,點D是線段OC關于點O的“完美點”,點F是線段EO關于點E的“完美點”.當線段DF分別取得最大值和最小值時,直接寫出線段CE的長.發布:2025/5/22 15:30:1組卷:595引用:1難度:0.1 -
3.如圖,直線y=-
x-6與x軸交于點A,點B(-6,m)也在該直線上,點B關于x軸的對稱點為點C,直線BC交x軸于點D,點E坐標為(0,12).112
(1)m的值為 ,點C的坐標為 ;
(2)求直線AC的函數表達式;
(3)晶晶有個想法:“設S=S△ABD+S四邊形DCEO.由點B與點C關于x軸對稱易得S△ABD=S△ACD,而△ACD與四邊形DCEO拼接后可看成△AOE,這樣求S便轉化為直接求△AOE的面積.”但經反復演算,發現S△AOE≠S,請通過計算解釋她的想法錯在哪里?發布:2025/5/23 2:30:1組卷:268引用:4難度:0.5