綜合與探究
如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c(a≠0)與x軸交于點A、B,與y軸交于點C,連接BC,OA=1,對稱軸為直線x=2,點D為此拋物線的頂點.
(1)求拋物線的解析式;
(2)拋物線上C、D兩點之間的距離是 2222;
(3)點E是第一象限內(nèi)拋物線上的動點,連接BE和CE,求△BCE面積的最大值;
(4)點P在拋物線對稱軸上,平面內(nèi)存在點Q,使以點B、C、P、Q為頂點的四邊形為矩形,請直接寫出點Q的坐標(biāo).

2
2
【考點】二次函數(shù)綜合題.
【答案】2
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/25 14:30:1組卷:2977引用:12難度:0.1
相似題
-
1.二次函數(shù)
的圖象與x軸交于A、兩點(點A在點B左邊),與y軸交于C點,且∠ACB=90°.y=-12x2+32x+m-2
(1)求這個二次函數(shù)的解析式;
(2)設(shè)計兩種方案:作一條與y軸不重合,與△A BC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的,寫出所截得的三角形三個頂點的坐標(biāo)(注:設(shè)計的方案不必證明).14發(fā)布:2025/5/28 4:30:1組卷:84引用:1難度:0.9 -
2.已知直線y=-2x+3與拋物線y=x2相交于A、B兩點,O為坐標(biāo)原點,那么△OAB的面積等于.
發(fā)布:2025/5/28 4:30:1組卷:238引用:6難度:0.5 -
3.拋物線y=ax2與直線x=1,x=2,y=1,y=2組成的正方形有公共點,則a的取值范圍是
發(fā)布:2025/5/28 4:30:1組卷:472引用:14難度:0.7