如圖,拋物線y=ax2+bx+c(a<0,a、b、c為常數)與x軸交于A、C兩點,與y軸交于B點,A(-6,0),C(1,0),B(0,163).
(1)求該拋物線的函數關系式與直線AB的函數關系式;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l,分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉得到ON(旋轉角在0°到90°之間);
i:探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉,NPNB始終保持不變,若存在,試求出P點坐標:若不存在,請說明理由;
ii:試求出此旋轉過程中,(NA+34NB)的最小值.
16
3
NP
NB
3
4
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/28 8:0:9組卷:1540引用:7難度:0.1
相似題
-
1.已知二次函數y=x2+bx+c的圖象經過A(-1,0),B(3,0),與y軸交于點C.
(1)求這個二次函數的解析式;
(2)點P是直線BC下方拋物線上的一個動點.
①求△PBC面積的最大值;
②連接AP交BC于點F,若PF=mAF,求m的最大值.發布:2025/6/9 12:0:2組卷:260引用:3難度:0.2 -
2.如圖,拋物線y=x2+bx+c(b、c是常數)的頂點為C,與x軸交于A、B兩點,A(1,0),AB=4,點P為線段AB上的動點,過P作PQ∥BC交AC于點Q.
(1)求該拋物線的解析式;
(2)點D是直線CA上一動點,點E是拋物線上一動點,當P點坐標為(-1,0)且四邊形PCDE是平行四邊形時,求點D的坐標;
(3)求△CPQ面積的最大值,并求此時P點坐標.發布:2025/6/9 8:30:2組卷:285引用:3難度:0.3 -
3.已知拋物線y=-x2+bx+c的對稱軸為直線x=1,其圖象與x軸相交于A,B兩點,與y軸相交于點C(0,3).
(1)求b,c的值;
(2)直線l與x軸相交于點P.
①如圖1,若l∥y軸,且與線段AC及拋物線分別相交于點E,F,點C關于直線x=1的對稱點為點D,求四邊形CEDF面積的最大值;
②如圖2,若直線l與線段BC相交于點Q,當△PCQ∽△CAP時,求直線l的表達式.發布:2025/6/9 11:0:1組卷:2058引用:4難度:0.3