閱讀與理解:
圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(點C與點C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉30°,連接AD,BE,如圖2,在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉一個角度α(0°≤α≤360°),連接AD,BE,如圖3,在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
猜想與發現:
根據上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大,最大是多少?當α為多少度時,線段AD的長度最小,最小是多少?

【考點】幾何變換綜合題.
【答案】(1)BE=AD,證明見解答;
(2)BE=AD,證明見解答;
當α為180°時,線段AD的長度最大,等于a+b;當α為0°(或360°)時,線段AD的長度最小,等于a-b.
(2)BE=AD,證明見解答;
當α為180°時,線段AD的長度最大,等于a+b;當α為0°(或360°)時,線段AD的長度最小,等于a-b.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/8 8:0:9組卷:86引用:9難度:0.1
相似題
-
1.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數;
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉60°得△CMH,E點對應點為M,G點的對應點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發布:2025/5/22 19:0:1組卷:524引用:1難度:0.2 -
2.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結論的序號是.發布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
3.在△ABC中,AB=AC,∠BAC=α,點P為線段CA延長線上一動點,連接PB,將線段PB繞點P逆時針旋轉,旋轉角為α,得到線段PD,連接DB,DC.
(1)如圖1,當α=60°時,
①求證:PA=DC;
②求∠DCP的度數;
(2)如圖2,當α=120°時,請直接寫出PA和DC的數量關系.
(3)當α=120°時,若AB=6,BP=,請直接寫出點D到CP的距離為.31發布:2025/5/23 4:0:1組卷:4734難度:0.1