【定義】只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊同側的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側有∠ADB和∠ACB,此時∠ADB=ACB;再比如△ABC和△BCD有公共邊BC,在BC同側有∠BAC和∠BDC,此時∠BAC=∠BDC.
【理解】
(1)如圖1,∠ABD=∠ACD∠ACD;

(2)如圖4,圖形中一定是損矩形的是 ③③(填序號);
【應用】
(3)如圖2,四邊形ABCD是以AC為直徑的損矩形,以AC為一邊向外作菱形ACEF,點D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?并說明理由;
(4)如圖3,四邊形ABCD是以AC為直徑的損矩形,點O為AC的中點,OG⊥BD于點G,若OG=2,則AC2-BD2=1616.
【考點】圓的綜合題.
【答案】∠ACD;③;16
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:316引用:4難度:0.1
相似題
-
1.等腰三角形AFG中AF=AG,且內接于圓O,D、E為邊FG上兩點(D在F、E之間),分別延長AD、AE交圓O于B、C兩點(如圖1),記∠BAF=α,∠AFG=β.
(1)求∠ACB的大小(用α,β表示);
(2)連接CF,交AB于H(如圖2).若β=45°,且BC×EF=AE×CF.求證:∠AHC=2∠BAC;
(3)在(2)的條件下,取CH中點M,連接OM、GM(如圖3),若∠OGM=2α-45°,
①求證:GM∥BC,GM=BC;12
②請直接寫出的值.OMMC發(fā)布:2025/6/7 16:0:2組卷:1490引用:8難度:0.1 -
2.已知,線段AB是⊙O的直徑,弦CD⊥AB于點H,點M是優(yōu)弧CBD上的任意一點,AH=2,CH=4.
(1)如圖1,
①求⊙O的半徑;
②求sin∠CMD的值.
(2)如圖2,直線BM交直線CD于點E,直線MH交⊙O于點N,連結BN交CD于點F,求HE?FH的值.發(fā)布:2025/6/7 7:0:1組卷:476引用:2難度:0.3 -
3.如圖,在Rt△ABC中,∠ACB=90°,過點C作CD⊥AB于點D,O為BC的中點,E是AC的中點,連接OE交CD于點F.
(1)若∠BCD=30°,BC=20,求BD的長;
(2)若∠BCD=30°,求證:以BC為直徑的圓與DE相切;
(3)求證:2CE2=AB?EF.發(fā)布:2025/6/8 19:30:1組卷:18引用:1難度:0.4