如圖,在四邊形ABCD中AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,動點P從點D出發,沿線段DA的方向以每秒2個單位長的速度運動,動點Q從點C出發,在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發,當點P運動到點A時,點Q隨之停止運動,設運動的時間為t(秒).
(1)當點P運動t秒后,AP=10-2t10-2t(用含t的代數式表示);
(2)若四邊形ABQP為平行四邊形,求運動時間t;
(3)當t為何值時,△BPQ是以BQ或BP為底邊的等腰三角形.
【考點】四邊形綜合題.
【答案】10-2t
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:77引用:1難度:0.3
相似題
-
1.如圖直角坐標系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點,已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個動點,P從O出發以每秒3個單位長度的速度向終點B運動,Q從B出發以每秒8個單位長度的速度向終點A運動,兩點同時出發,當其中一點到達終點時整個運動結束,設運動時間為t(秒).
(1)求線段AB的長,及點A的坐標;
(2)t為何值時,△BPQ的面積為2;3
(3)若C為OA的中點,連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
①t為何值時,點D恰好落在坐標軸上;
②是否存在時間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫出t的值.發布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3 -
2.如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,FF1⊥直線AB于F1.
(1)如圖(1),過點C作CH⊥AB于H,求證:DD1+FF1=AB;
(2)如圖(2),連接EG,問△ABC的面積與△ECG的面積是否相等?請說明理由;
(3)如圖(3),過點C作CM⊥EG于M,延長MC交AB于點N,求證:AN=BN.發布:2025/6/21 3:30:1組卷:127引用:3難度:0.5 -
3.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動點P從點A出發沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿CB方向向點B以3cm/s的速度運動.P、Q兩點同時出發,設運動時間為t,當其中一點到達端點時,另一點隨之停止運動.
(1)當t=3時,PD=,CQ=.
(2)當t為何值時,四邊形CDPQ是平行四邊形?請說明理由.
(3)在運動過程中,設四邊形CDPQ的面積為S,寫出S與t的函數關系式,并求當t為何值時,S的值最大,最大值是多少?發布:2025/6/21 2:0:1組卷:147引用:2難度:0.3