材料閱讀:中位線是一個數學術語,是平面幾何內的三角形任意兩邊中點的連線或梯形兩腰中點的連線.而在三角形中,它的中位線平行于第三邊,并且等于第三邊的一半.例:如圖1,在△ABC中,若D、E分別是AB、AC的中點,則DE為△ABC的中位線,并且DE∥BC,DE=12BC.請根據材料,完成以下問題:
(1)如圖2,在△ABC中,AB=AC,且D、E、F分別是邊AB、AC、BC的中點,分別連接DE、EF、FD.證明:四邊形ADFE是菱形.
(2)如圖3,已知正方形ABCD,點F是射線DC上一動點(不與C、D重合).連接AF并延長交直線BC于點E,交BD于H,連接CH,過點C作CG⊥HC交AE于點G.
①若點F在邊CD上,如圖3,猜想△GFC的形狀并說明理由.
②取DF中點M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.

1
2
【考點】四邊形綜合題.
【答案】(1)證明見解析部分;
(2)①結論:△GFC是等腰三角形,利用見解析部分;
②BE的長為7或1.
(2)①結論:△GFC是等腰三角形,利用見解析部分;
②BE的長為7或1.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:320引用:2難度:0.1
相似題
-
1.在平行四邊形ABCD中,M,N分別是邊AD,AB的點,AB=kAN,AD=kAM.
(1)如圖1,若連接MN,BD,求證:MN∥BD;
(2)如圖2,把△AMN繞點A順時針旋轉角度α(0°<α<90°)得到△AFE,M,N的對應點分別為點E,F,連接BE,若∠ABF=∠EBC,∠AEB=2∠DAE.
①直接寫出k的取值范圍;
②當tan∠EBC=時,求k的值.13發布:2025/5/26 11:30:1組卷:207引用:3難度:0.2 -
2.如圖,在四邊形ABCD中,AD∥BC,∠DAB=90°,AB=6cm,BC=8cm,AD=4cm.點P從點A出發沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發沿CA 向點A勻速運動,速度是1cm/s,當一個點到達終點,另一個點立即停止運動.連接PQ,BP,BQ,設運動時間為t(s),解答下列問題:
(1)當t為何值時,PQ∥CD?
(2)設△BPQ的面積為s(cm2),求s與t之間的函數關系式;
(3)是否存在某一時刻t,使得△BPQ的面積為四邊形ABCD面積的?若存在,求出此時t的值;若不存在,說明理由;12
(4)連接BD,是否存在某一時刻t,使得BP平分∠ABD?若存在,求出此時t的值;若不存在,說明理由.發布:2025/5/26 12:0:1組卷:399引用:2難度:0.1 -
3.如圖,正方形ABCD中,在AD的延長線上取點E,F,使DE=AD,DF=BD,連接BF分別交CD,CE于H,G下列結論正確的有
①GD=GH;②EC=2DG;③S△CDG=S四邊形DHGE; ④圖中有7個等腰三角形.發布:2025/5/27 4:0:1組卷:172引用:1難度:0.5